Вход в личный кабинет | Регистрация
Избранное (0) Список сравнения (0)
Ваши покупки:
0 товаров на 0 Р
Итого: 0 Р Купить

Что такое мышечные волокна – Типы мышечных волокон — SportWiki энциклопедия

Содержание

Типы мышечных волокон I Как их тренировать?

ru — RUB Изменить
  • Связаться с нами
  • Помощь
Myprotein Russia Назад
  • Питание
    • Бестселлеры
    • Наборы
    • Новинки
    • Пробники
    • Распродажа
    • Нет опыта использования добавок?
    • Питание Домашняя Страница
    • Популярное
      • Бестселлеры
      • Наборы
      • Новинки
      • Пробники
      • Распродажа
      • Нет опыта использования добавок?
    • Протеин
      • Протеин  Домашняя Страница
      • Сывороточный протеин
      • Молоко и казеин
      • Протеин для веганов
      • Смеси и формулы
    • Аминокислоты
      • Аминокислоты  Домашняя Страница
      • BCAA
      • Глyтамин
      • L-Карнитин
    • Креатин
      • Креатин  Домашняя Страница
      • Моногидрат креатина
    • Управление весом тела
      • Управление весом тела  Домашняя Страница
      • Набор массы
      • Жиросжигатели
      • Диетические шейки
    • Добавки для приема до, во время и после тренировки
      • Добавки для приема до, во время и после тренировки  Домашняя Страница
      • До тренировки
      • Во время тренировки
      • После тренировки
    • Углеводы
      • Углеводы  Домашняя Страница
      • Энергетические добавки
      • Энергетические батончики
      • Энергетические гели
      • Энергетические напитки
    • Еда и закуски
      • Еда и закуски  Домашняя Страница
      • Протеиновые батончики
      • Ореховые пасты
      • Ароматизаторы и сахарозаменители
      • Протеиновые напитки
      • Заменители питания
      • Еда
      • Протеиновые закуски
    • Витамины и минералы
      • Витамины и минералы  Домашняя Страница
      • Мультивитамины
      • Витаминные добавки
      • Минералы
    • Клетчатка и незаменимые жиры
      • Клетчатка и незаменимые жиры  Домашняя Страница
      • Добавки с клетчаткой
      • Растения, травы и нутриенты
      • Омега 3 и рыбий жир
    • Аксессуары
      • Аксессуары  Домашняя Страница
      • Бутылки и шейкеры
      • Контейнеры для еды
      • Мерные ложки и тубы
      • Аксессуары для тренировок
  • Одежда
    • Одежда Домашняя Страница
    • Мужская одежда
      • Мужская одежда  Домашняя Страница
      • Новинки
      • Футболки и топы
      • Куртки и жилеты
      • Толстовки и худи
      • Спортивные штаны
      • Майки
      • Шорты
      • Шорты для плавания
      • Нижнее бельё и носки
      • Вся Одежда
    • Женская одежда
      • Женская одежда  Домашняя Страница
      • Новинки
      • Спортивные леггинсы
      • Спортивные Бюстгальтеры
      • Куртки и жилеты

www.myprotein.ru

виды, свойства, структура :: SYL.ru

Мышцы или мускулы – важнейшая составляющая опорно-двигательного аппарата, обладающая сократительной способностью. Именно благодаря возможности мышечных тканей сокращаться, человек может выполнять всяческие движения, начиная с самых простых (моргание и улыбка) и заканчивая максимально тонкими (как у ювелиров) и энергичными (как у спортсменов). Функциональность мышечного скелета напрямую связана с составом его главных структурных единиц – мышечных волокон. Сегодня мы с вами рассмотрим структуру мышечных волокон, их классификацию и роль в двигательной активности человека.

Почему мышцы сокращаются

Волокна скелетных мышц соединяются со спинным мозгом посредством толстых нервных волокон. После попадания в мускул каждое из нервных волокон делится на сотни разветвлений, которые снабжают сотни мышечных волокон. Соединение между нервом и волокном мышечной ткани называют синапсом, или нервно-мышечным соединением. Примечательно, что на каждом мышечном волокне может формироваться только один синапс. При соответствующем нервном сигнале возникает потенциал действия, который передается по нервам от спинного мозга к мускулам.

От свойств мышечных волокон зависит то, как мускулатура адаптируется к повторяющимся сигналам. Именно типы волокон обуславливает предрасположенность спортсмена к той или иной тренировочной программе. Во время тренировки происходит гипертрофия мышечных волокон – увеличение их объема и массы. При этом важно понимать, что количество волокон не изменяется и обуславливается генетическими особенностями того или иного человека.

Состав

В состав мышечного волокна входят:

  1. Миофибриллы. Выполняют сократительную функцию.
  2. Митохондрии. Отвечают за продуцирование энергии.
  3. Ядра. Отвечают за регуляцию.
  4. Сарколемма. Представляет собой соединительнотканную оболочку.
  5. Ретикулум (саркоплазматический или эндоплазматический). Представляет собой депо кальция, который необходим для возбуждения миофибриллы.
  6. Капилляры. Отвечают за поставку кислорода и питательных веществ.

Типы мышечных волокон

Волокна скелетных мышц могут иметь различные механические и метаболические свойства. Классификация волокон основана на различии в максимальной скорости их сокращения (быстрые и медленные) и метаболическом пути, который используется ими для образования аденозинтрифосфата (АТФ) (окислительные и гликолитические). В целом мышечные волокна делятся на медленные окислительные и быстрые гликолитические.

Медленные окислительные

Тонкие волокна этого типа хорошо снабжаются кровью и содержат много миоглобина, придающего им красную окраску (поэтому их часто называют красными). Они также отличаются низким порогом активации мотонейрона, медленным сокращением и наличием большого количества крупных митохондрий, которые содержат ферменты окислительного фосфорилирования. Медленные мышечные волокна, по сравнению с быстрыми, содержат больше миозина и меньше фермента аденозинтрифосфатазы (АТФазы). Иннервация медленных окислительных волокон обеспечивается малыми альфа-мотонейронами спинного мозга. Из-за неспешного сокращения такие волокна хорошо приспособлены к длительной нагрузке.

Быстрые гликолитические

Толстые волокна этого типа отличаются высокой скоростью сокращения, большой силой и быстрой утомляемостью. Они хуже снабжаются кровью, нежели предыдущий тип, имеют меньше митохондрий, миоглобина и липидов. Этим обусловлена светлая окраска быстрых мышечных волокон, за которую их нарекли «белыми». В отличие от предыдущего вида они содержат в себе главным образом ферменты анаэробного окисления и миофибриллы, в состав которых входит небольшое количество миозина. Вместе с тем, этот миозин способен быстро сокращаться и лучше металлизировать АТФ. Кроме того, в быстрых волокнах более ярко выражено наличие саркоплазматического ретикулума. Так как сокращение и утомление этих волокон происходит быстро, они задействуются в кратковременной взрывной работе. Иннервация быстрых мышечных волокон осуществляется большими альфа-мотонейронами спинного мозга.

Быстрые волокна подразделяются на два типа:

  • IIa: быстрые окислительно-гликолитические. Их часто называют просто «быстрыми окислительными». Средние по толщине волокна обладают большей силой, чем волокна типа IIb, но быстрее утомляются и обладают способностью к выраженному сокращению. Источниками энергии для волокон этого типа служат как окислительные, так и анаэробные процессы.
  • IIb: быстрые гликолитические волокна. Обладают большими размерами, высоким порогом активации мотонейрона и быстрой утомляемостью. Активация происходит при кратковременных нагрузках, требующих большой силы. Данный тип волокон получает энергию через анаэробное окисление. Отличаются большим содержанием гликогена и малым содержанием митохондрий.

Кроме того, иногда выделяют еще один тип быстрых волокон – IIc. Волокна этого типа могут проявлять и окислительную, и гликолитическую функцию. Их доля в мускулах не превышает одного процента. В зависимости от типа нагрузок волокна типа IIc могут переходить в волокна других типов.

Быстрые или медленные

Принадлежность мышечных волокон к быстрым или медленным зависит от активности миозиновой АТФазы, которая обуславливает скорость сокращения мускулов. Активность указанного фермента наследуется, поэтому изменить соотношение быстрых и медленных волокон с помощью тренировок нельзя.

Благодаря АТФазе происходит высвобождение энергии, заключенной в АТФ. Энергии одной молекулы аденозинтрифосфата достаточно, чтобы миозиновые мостики сделали один поворот («гребок»). Скорость одиночного «гребка» у всех видов мускулов одинакова. В волокнах, содержащих высокоактивную АТФазу, гребок происходит быстрее, а значит за определенную единицу времени волокно сокращается большее количество раз.

В медленных окислительных волокнах, обладающих способностью к окислительному фосфорилированию, содержится много митохондрий. В таких волокнах в значительном количестве могут содержаться липиды, и в незначительном – гликоген. Основное количество АТФ, произведенного этими волокнами, прямо зависит от топливных молекул и снабжения кровеносной системы кислородом. Они окружены большим количеством капилляров и содержат в себе много миоглобина, увеличивающего поглощение кислорода тканями и способствующего небольшому накоплению кислорода внутри клеток. В быстрых волокнах митохондрий мало, но их концентрация гораздо большая, равно как и концентрация гликолитических ферментов и гликогена.

Гликолитические, промежуточные или окислительные

Как правило, гликолитические волокна больше в диаметре, нежели окислительные. Чем больше диаметр, тем большего растяжения они могут достичь и тем больше их сила. Классификация основана на окислительном потенциале мускула, то есть количестве митохондрий, содержащихся в мышечном волокне. Митохондриями называют клеточные органеллы, в которых глюкоза или жир распадаются на углекислый газ и воду, ресинтезируя при этом АТФ, которая, в свою очередь, ресинтезирует креатинфосфат. Ну а креатинфосфат необходим для ресинтеза миофибриллярных молекул АТФ, использующегося в мышечном сокращении. Вне митохондрий расщепление глюкозы до пирувата и ресинтез АТФ также возможно, однако в таком случае в мышечных тканях образуется молочная кислота, которая вызывает их утомление.

По описанному выше признаку, волокна мышечной ткани делятся на три группы:

  1. Окислительные. Содержание в них митохондрий настолько велико, что в процессе тренировки их прибавки не происходит.
  2. Промежуточные. Количество митохондрий в них снижено, и во время работы мускула в нем накапливается молочная кислота. Происходит это довольно медленно.
  3. Гликолитические. Содержат малое количество митохондрий, поэтому процесс анаэробного гликолиза с накоплением молочной кислоты является в них преобладающим.

Соотношение волокон

У людей, которые не занимаются спортом, как правило, быстрые волокна являются гликолитическими или промежуточными, а медленные – окислительными. Тем не менее при грамотных тренировках быстрые мышечные волокна могут переходить из гликолитических в промежуточные, а из промежуточных в окислительные. Речь идет о развитии выносливости. А при тренировках, нацеленных на развитие силы, промежуточные волокна переходят в гликолитические. При этом соотношение быстрых и медленных мышечных волокон предопределено генетически, поэтому практически не меняется путем тренировки. Возможен переход 1-3%, но не более.

Мускулы обладают разным процентным соотношением белых и красных волокон. Следовательно, скорость сокращения, сила и выносливость разных мышечных групп отличается. К примеру, икроножная мышца содержит больше быстрых волокон, которые придают ей способность к быстрому и сильному сокращению, используемому, например, во время прыжка. Вместе с тем, камбаловидная мышца, соседствующая с икроножной, наоборот, содержит больше медленных волокон, так как она отвечает за длительную активность ног.

Соотношение основных видов волокон мышечной ткани определяет спортивную предрасположенность разных людей. Именно поэтому не существует универсальных атлетов.

Высокопороговые и низкопороговые

Кроме всего прочего, мышечные волокна также подразделяются по уровню порога возбудимости. Мускул сокращается, когда на него воздействуют нервные импульсы, имеющие электрическую природу. Двигательная единица (ДЕ) состоит из: мотонейрона, аксона и совокупности мышечных волокон. Количество ДЕ в теле человека не меняется на протяжении всей жизни. Каждая из двигательных единиц имеет свой порог возбудимости. Если мозг посылает нервные импульсы с частотой ниже этого порога, значит ДЕ пассивна. Если же нервные импульсы имеют пороговую частоту, или превышают ее, то волокна мышц активируются и сокращаются. У низкопороговых ДЕ некрупные мотонейроны, тонкий аксон и иннервируемые медленные волокна, исчисляемые сотнями. Высокопороговые ДЕ отличаются крупными мотонейронами, толстым аксоном и тысячами иннервируемых быстрых волокон.

Таким образом, медленные окислительные волокна относятся к низкопороговым и возбуждаются при незначительной нагрузке. А быстрые волокна, соответственно, относятся к высокопороговым и активируются только при интенсивных нагрузках.

Миозин

Существенное различие разных видов мышечных волокон обуславливает значительную гетерогенность мышечных тканей и их способность к выполнению разнообразных функциональных задач. Биохимический и иммуногистохимический анализ скелетных мускулов показывает, что структурное и функциональное разнообразие мышечных волокон обуславливается широким спектром изоформ миозина. Миозином называется фибриллярный белок, выступающий одним из главных компонентов сократительных мышечных волокон. Он составляет от 40 до 60% общего количества мышечного белка в организме. При соединении миозина с актином (еще один мышечный белок) образуется актомиозин – основной элемент сократительной системы мускулов.

В состав молекулы миозина входит две тяжелых цепи (MyHC) и четыре легких (MyLC). Тяжелые цепи имеют несколько изоформ, свойства которых обуславливают силовые и скоростные показатели мышечных волокон. Наиболее важными считаются четыре изоформы: MyHCI, MyHCIIA, MyHCIIX/IID, и MyHCIIB. Каждая изоформа имеет специфическую скорость сокращения и позволяет развить определенное усилие. Волокна, в состав которых входит MyHCI, по сравнению с волокнами, содержащими другие формы тяжелой цепи миозина, медленнее сокращаются и развивают меньшее усилие. Наиболее быстрыми и сильными считаются волокна, содержащие MyHCIIB изоформу тяжелой цепи. За ними следует MyHCIIX и MyHCIIA форма.

Физическая активность может привести к весомым изменениям сократительных свойств мускулов. Принято считать, что при тренировке на выносливость увеличивается количество медленных изоформ миозина. Вместе с тем во время силовой тренировки происходит увеличение количества MyHCIIA и уменьшение MyHCIIX. Кроме того, считается, что у основной массы людей, активность которых ограничивается простыми бытовыми делами, волокна, содержащие миозин в форме MyHCIIX, крайне редко вовлекаются в работу. В процессе физической тренировки они начинают задействоваться и постепенно переходят в MyHCIIA форму. Дело в том, что волокна, содержащие IIA изоформу тяжелой цепи миозина, имеют большую выносливость, по сравнению волокнами IIX типа.

Во время тренировок выносливости или силы происходит весомое изменение гормонального фона скелетных мускулов, которое служит мощным сигналом, запускающим процесс изменения состава миозина в мускулах, подвергающихся нагрузке.

Заключение

Резюмируя вышесказанное, стоит отметить, что мышечные волокна являются главной структурной единицей мышечного скелета. Соотношение белых и красных волокон является генетическим фактором, равно как и общее количество волокон в мускуле. При правильной тренировке можно не только увеличить объем и массу мышечных волокон, но и добиться изменениях их гликолитических и окислительных свойств.

www.syl.ru

Быстрые и медленные мышечные волокна – в чём различия

Во время тренировок для жиросжигания или набора массы, нужно задействовать разные типы мышечных волокон. О том, какие они бывают и как определить соотношение мышечных волокон в теле, читайте в статье.

Занимаясь спортом, мы постоянно употребляем слово «мышцы». Мы говорим про то, что они работают, болят, растут или не растут и так далее. Как правило, дальше этого наши знания о мышцах не заходят. Тем не менее, очень важно понимать, что по своему составу мышцы могут быть разные, и предрасположены к разного рода нагрузке.

Что такое мышцы?

Мышца – это орган, который состоит из волокон и способен к сокращению под воздействием нервных импульсов, посылаемых головным мозгом посредством связи «мозг-мышцы». Соответственно, главные функции мышечного волокна в контексте спорта – осуществление движений и поддержание положения тела.

Мышечные волокна бывают двух типов – медленные (ММВ) или красные, и быстрые (БМВ) или белые.

Медленные (красные) мышечные волокна

Эти волокна называются медленными, потому что они обладают низкой скоростью сокращения и максимально приспособлены к выполнению продолжительной непрерывной работы. Они окружены сетью капилляров, которые постоянно доставляют кислород. Также эти волокна называют красными из-за своего цвета. Цвет обуславливает белок миоглобин. Этот тип волокон способен получать энергию не только из углеводов, но и из жиров.

Когда включаются в работу ММВ

ММВ начинают сокращаться при выполнении разного вида кардионагрузки, которые требуют выносливости:

  • длительный бег (марафонский бег)
  • плавание
  • езда на велосипеде
  • прыжки на скакалке
  • занятия на кардиотренажёрах
  • статические упражнения

Т.е. во всех случаях, когда Вы совершаете достаточно длительную и монотонную работу, которая не требует «взрывных» усилий. А значит интервальную кардиотренировку уже нельзя будет отнести к примеру работы исключительно ММВ.

Принято считать, что красные мышечные волокна не способны к существенной гипертрофии, т.е. не увеличиваются в объёме. Именно поэтому Вы никогда не увидите «накаченного» марафонца.

Тренировка ММВ направлена на:

  • увеличение выносливости
  • избавление от жира
  • увеличения количества кровеносных капилляров

Быстрые (белые) мышечные волокна

По аналогии с медленными, можно догадаться, что быстрые мышечные волокна способны к высокоинтенсивной, тяжелой, но кратковременной работе. Эти волокна используют бескислородный способ получения энергии, а значит используют, главным образом, углеводы. Именно поэтому они белого цвета. Их быстрое утомление связано с тем, что во время сокращения мышечного волокна образуется молочная кислота и, чтобы вывести её, необходимо некоторое время.

Но белые мышечные волокна также бывают разными.

Подтипы быстрых мышечных волокон:

подтип 2A или промежуточные мышечные волокна

Их ещё называют переходными, потому что эти волокна могут использовать как аэробный так и анаэробный способ получения энергии. По сути, это что-то среднее между красными и белыми волокнами.

подтип 2Б или истинные БМВ

Эти волокна используют только анаэробный (бескислородный) способ получения энергии и обладают максимальной силой. Они способны к существенному росту, поэтому все программы по набору мышечной массы рассчитаны на работу именно этих волокон.

Когда включаются в работу БМВ

Это происходит, когда нужно приложить максимум усилий в короткий промежуток времени. Т.е. при анаэробных тренировках:

  • бодибилдинг
  • пауэрлифтинг
  • тяжелая атлетика
  • спринтерский бег и плавание
  • боевые искусства

Эти тренировки способствуют увеличению мышцы в объёме за счёт увеличения поперечного сечения мышечного волокна.

Тренировка БМВ направлена на:

  • увеличение силы
  • увеличение мышечной массы

Может ли меняться соотношение быстрых и медленных мышечных волокон в теле

На этот счёт существует несколько мнений и, как обычно, в защиту каждого из них приводят различные доводы.

Считается, что первостепенное соотношение мышечных волокон заложено в нас генетически и именно поэтому одним людям намного легче даётся бег, а другим силовая нагрузка. Но с другой стороны, исследуя людей, занимающихся разными видами спорта, было выявлено, что, например, у тяжелоатлетов преобладают быстрые мышечные волокна, а у марафонцев медленные. Соответственно, предполагают, что тренировки способны немного «перераспределять» соотношение и количество мышечных волокон в теле. Хотя, относительно второго подхода, не совсем понятно, было ли причиной преобладания тех или иных волокон определённый вид спорта, или всё-таки этот выбор спорта был последствием генетических задатков.

Ещё один важный момент, который нужно понимать – мышцы и волокна – это не одно и то же. Все крупные мышцы тела состоят из разных видов мышечных волокон. Не существует абсолютно «быстрых» и «абсолютно» медленных мышц, просто в них может преобладать то или иное мышечное волокно.

Как определить какие мышечные волокна преобладают

Это можно сделать, отдав образцы тканей в лабораторию для исследования, или самостоятельно провести тест на соотношение мышечных волокон. Рассмотрим как это делать на примере упражнения подъём гантелей на бицепс:

  • 1) необходимо подобрать такой вес гантелей, при котором Вы сможете выполнить только одно повторение этого упражнения – это будет максимальный вес
  • 2) после этого нужно отдохнуть около 15 минут и выполнить это упражнение с весом, составляющим 80% от максимального ровно столько раз, сколько получится сделать это без дополнительной помощи
  • 3) на основании полученного количества раз интерпретировать результаты
  • 4) проделать тоже самое со всеми основными группами мышц

Интерпретация результатов теста

Количество выполненных повторений Преобладание типа мышечных волокон
меньше 7-8 повторенийбыстрые мышечные волокна
9 повторенийравное количество волокон двух типов
больше 10-12 повторениймедленные мышечные волокна

Подводя итог, хочу сказать, что информация и типах мышечных волокон нужна Вам для того, чтобы понимать какое качество можно развить, задействуя, те или иные волокна. Так, если основная цель – развитие выносливости, то неразумно заниматься силовыми тренировками. И соответственно, выполняя монотонное кардио, Вы не сможете добиться увеличения мышечной массы.

Понравилась статья? Скажите «спасибо» автору и поделитесь ей в социальных сетях, нажав на соответствующую иконку в правом нижнем углу.

А чтобы получать больше полезной информации каждый день, подпишитесь на наш instagram.

vimo.fitness

КЛАССИФИКАЦИЯ МЫШЕЧНЫХ ВОЛОКОН!

   Всем известно, что каждый человек имеет индивидуальную мышечную композицию, то есть только ему присущее сочетание мышечных клеток (волокон) разных типов во всех скелетных мышцах. Вот только классификаций этих типов волокон несколько и они не всегда совпадают. Какие же классификации сейчас приняты?
Мышечные волокна делятся:

1. На белые и красные

2. На быстрые и медленные

3. На гликолитические, промежуточные и окислительные

4. На высокопороговые и низкопороговые 

Разберем все подробно.

   Белые и красные. На поперечном сечении мышечное волокно может иметь различный цвет. Он зависит от количества мышечного пигмента миоглобина в саркоплазме мышечного волокна. Если содержание миоглобина в мышечном волокне большое, то волокно имеет красно-бурый цвет. Если миоглобина мало, то бледно-розовый. У человека почти в каждой мышце содержатся белые и красные волокна, а так же волокна слабо пигментированные. Миоглобин используется для транспортировки кислорода внутри волокна от поверхности к митохондриям, соответственно его количество определяется количеством митохондрий. Увеличивая количество митохондрий в клетке специальными тренировками, мы увеличиваем количество миоглобина и изменяем цвет волокна.

   Быстрые и медленные. Классифицируются по активности фермента АТФ-азы и, соответственно, по скорости сокращения мышц. Активность данного фермента наследуется и тренировке не поддается. Каждое волокно имеет свою неизменную активность этого фермента. Освобождение энергии заключенной в АТФ, осуществляется благодаря АТФ-аза. Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Скорость одиночного гребка одинакова у всех мышц. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.

   Гликолитические, промежуточные и окислительные. Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне. Напомню, что митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата. Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые необходимы для мышечного сокращения. Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.

По этому признаку мышечные волокна подразделяются на 3 группы:
  
1. Окислительные мышечные волокна. В них масса митохондрий так велика, что существенной прибавки ее в ходе тренировочного процесса уже не происходит.

2. Промежуточные мышечные волокна. В них масса митохондрий значительно снижена, и в мышце в процессе работы накапливается молочная кислота, однако достаточно медленно, и утомляются они гораздо медленнее, чем гликолитические.

3. Гликолитические мышечные волокна. В них очень незначительное количество митохондрий. Поэтому в них преобладает анаэробный гликолиз с накоплением молочной кислоты, отчего они и получили свое название. (Анаэробный гликолиз – расщепление глюкозы без кислорода до молочной кислоты и АТФ; аэробный гликолиз, или окисление – расщепление глюкозы в митохондриях с участием кислорода до углекислого газа, воды и АТФ.)

   У не тренирующихся людей обычно быстрые волокна – гликолитические и промежуточные, а медленные – окислительные. Однако при правильных тренировках на увеличение выносливости промежуточные и часть гликолитических волокон можно сделать окислительными, и тогда они, не теряя в силе, перестанут утомляться.
  
   Высокопороговые и низкопороговые. Классифицируются по уровню порога возбудимости двигательных единиц. Мышца сокращается под действием нервного импульса, который имеет электрическую природу. Каждая двигательная единица (ДЕ) включает в себя мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ у человека остается неизменным на протяжении всей жизни. Двигательные единицы имеют свой порог возбудимости. Если нервный импульс, посылаемый мозгом, имеет величину ниже этого порога, ДЕ пассивна. Если нервный импульс имеет пороговую для этой ДЕ величину или превышает ее, мышечные волокна сокращаются. Низкопороговые ДЕ имеют маленькие мотонейроны, тонкий аксон и сотни иннервируемых медленных мышечных волокон. Высокопороговые ДЕ имеют крупные мотонейроны, толстый аксон и тысячи иннервируемых быстрых мышечных волокон.

Как видите, две из представленных классификаций неизменны на протяжении всей жизни человека вне зависимости от тренировок, а две напрямую зависят именно от тренировок. В отсутствии двигательного режима, например в коме, или долгом нахождении в гипсе даже медленные мышечные волокна теряют свои митохондрии и соответственно миоглобин и становятся белыми и гликолитическими.

   Поэтому в настоящее в спортивной науке считается неправильно говорить: «тренировки направленные на гипертрофию быстрых мышечных волокон», или «гиперплазия миофибрилл в медленных мышечных волокнах», хотя еще 10 лет назад это считалось допустимо даже в специализированных научных изданиях. Сейчас если мы говорим о тренировочном воздействии на МВ, то используем только классификацию по окислительному потенциалу мышцы. Классификации совпадают у не тренирующихся и у представителей скоростно-силовых и силовых видов спорта, где цель поднять максимальный вес в единичном повторении. В видах спорта требующих проявления выносливости классификации совпадать не будут.

   Для наглядности приведу несколько утрированный, хотя теоритически вполне возможный пример. Сразу оговорюсь, что все цифры условные, и их не надо воспринимать буквально. Представим атлета, у которого лучший результат в жиме лежа 200 кг (без экипировки), 180 кг он может пожать на 3 раза, 150 кг на 10 раз. Из результатов видно, что окислительный потенциал мышц очень низок. Соотношение волокон, предположим, следующее: 90% быстрые, 10% медленные. По окислительному потенциалу 75% гликолитические, 15% промежуточные и 10% окислительные. Наилучших успехов в увеличении мышечной массы спортсмен добивается, когда работает в жиме по 6 повторений. Вес штанги достаточно большой чтобы рекрутировать 75% гликолитических волокон, а окислительный потенциал их настолько низок, что и 6-и повторений достаточно для необходимого закисления мышцы.

   Но вот по какой-то причине этот атлет решил максимально увеличить свою выносливость и два месяца по 2-3 раза в день ежедневно работал над увеличением митохондрий в гликолитических и промежуточных МВ. Подробно об этой методике вы можете прочитать в 5-м номере «ЖМ», в моей статье «Тренировка выносливости». Плюс к этому атлет еще поддерживал свой силовой потенциал, выполняя по 1-2 повторениям с околомаксимальным весом раз в 7-10 дней. Два месяца достаточно для предельного насыщения мышц митохондриями. Через два месяца спортсмен проводит тестирование. Оно показывает, что сейчас у него 5% гликолитических волокон, 70% промежуточных и 25% окислительных. То есть гликолитические стали промежуточными, кроме 5% самых высокопороговых, а промежуточные стали окислительными. По активности АТФ-азы соотношение естественно не изменилось, так же 90% быстрые и 10% медленные. 200 кг он выжал на 1 раз, миофибриллы от таких тренировок не выросли, а упасть результату он не дал, используя в тренировках ММУ. 180 кг он выжал на 8 раз, а 150 кг на 25 раз. Огромное количество новых митохондрий «съедало» молочную кислоту не давая мышцам закислиться, что значительно увеличило их функциональность.
Теперь нашему атлету для увеличения мышечной массы работа на 6 повторений практически ничего не даст. Она задействует в нужном режиме только 5% оставшихся гликолитических волокон.

   Сейчас ему придется работать минимум по 15 повторений в подходе, чтобы добиться необходимого для роста мышечной массы закисления мышц. И, дополнительно, включить в тренировку стато-динамические упражнения, поскольку только они способствуют гипертрофии окислительных мышечных волокон, которых у него теперь 25%, и игнорировать их уже нецелесообразно.

   Как мы видим, один и тот же человек вынужден использовать абсолютно разные тренировочные программы для гипертрофии своих быстрых мышечных волокон после изменения их окислительного потенциала! Вот поэтому говорить о тренировочном воздействии на типы волокон, используя классификацию по активности АТФ-зы, считается некорректным. Только классификация по окислительным способностям мышц!

www.optimumnutrition.ru

Медленные мышечные волокна (окислительные) — SportWiki энциклопедия

Различия и динамические свойства

Медленные мышечные волокна — это медленно сокращающиеся волокна, которые отличаются небольшой силой, но низкой утомляемостью. Они небольшие по размеру и плохо гипертрофируются. Участвуют в выполнении длительной низкоинтенсивной работы на выносливость (бег, ходьба), то есть при аэробных нагрузках. За счет высокого содержания миоглобина имеют красный цвет.

Все скелетные мышцы состоят из мышечных клеток — миоцитов или мышечных волокон. Выделяют разные типы миоцитов, которые специализируются на разных видах нагрузки. По ряду структурно-функциональных характеристик мышечные клетки скелетной мускулатуры классифицируются на два типа:

  • Медленные мышечные волокна, также называемые красные мышечные волокна или окислительные мышечные волокна (ОМВ) — подтипа I (о них пойдет речь в данной статье)
  • Быстрые или белые мышечные волокна или гликолитические мышечные волокна (ГМВ) — подтипа IIa[1], IIb.
Отличия быстрых и медленных волокон

Мотонейроны медленных волокон имеют наиболее низкие пороги их активации, меньшие толщина аксона и скорость проведения возбужде­ния по нему. Аксон разветвляется на небольшое число концевых веточек и иннервирует небольшую группу мышечных волокон. У мотонейронов медленных волокон сравнительно низкая частота разрядов (6-10 имп/с). Они начинают функционировать уже при малых мышечных усилиях. Так, мотонейроны камбаловидной мышцы человека при удобном стоянии работают с частотой 4 имп/с. Ус­тойчивая частота их импульсации составляет 6- 8 имп/с. С повыше­нием силы сокращения мышцы частота разрядов мотонейронов мед­ленных волокон повышается незначительно (до 25 имп/с). Мотонейроны медленных волокон способны поддерживать постоянную частоту разрядов в течение десятков минут.

Мышечные волокна медленных волокон развивают небольшую силу при сокращении в связи с наличием в них меньшего, по сравнению с быстрыми волокнами, количества миофибрилл. Скорость сокращения этих волокон в 1,5-2 раза меньше, чем быстрых. Основными при­чинами этого являются низкая активность миозин АТФ-азы и мень­шие скорость выхода ионов кальция из саркоплазматического ре-тикулума и его связывания с тропонином в процессе возбуждения волокна.

Мышечные волокна медленных волокон малоутомляемы. Они обладают хорошо развитой капиллярной сетью. На одно мышечное волокно, в среднем, приходится 4-6 капилляров. Благодаря этому во время сокращения они обеспечиваются достаточным количеством кислоро­да. В их цитоплазме имеется большое количество митохондрий и высокая активность окислительных ферментов. Все это определяет существенную аэробную выносливость данных мышечных волокон и позволяет выполнять работу умеренной мощности длительное время без утомления.

Для чего нужны медленные мышечные волокна[править | править код]

Медленные или красные мышечные волокна выполняют следующие функции в организме:

  • Динамическая работа или аэробика — длительный бег, плавание или велогонка. Этот тип волокон преобладает у марафонцев, велогонщиков и других легкоатлетов.
  • Поддержание позы (мышцы спины).
  • Производство тепла.

Как уже было сказано выше, этот тип волокон богат миоглобином — белком, который запасает в себе кислород. Во время выполнения аэробных физических нагрузок митохондрии красных мышечных волокон производят энергию за счёт окисления глюкозы кислородом. Миоглобин способен отдавать кислород митохондриям, если с кровью его поступает недостаточно. Медленные мышечные волокна хорошо кровоснабжаются, поэтому кислорода к ним поступает значительно больше, чем к быстрым миоцитам.

Красные мышечные волокна и бодибилдинг[править | править код]

В исследованиях было продемонстрировано, что медленные мышечные волокна обладают слабой способностью к гипертрофии (разрастанию). Другие испытания показали, что соотношение быстрых и медленных мышечных волокон практически не меняется в результате специализированных тренировок. Это значит, что если в вашем организме преобладают красные мышечные волокна, то ваши результаты в бодибилдинге или пауэрлифтинге будут хуже, чем у среднего человека, в тоже время вы будете иметь преимущество в легкоатлетических видах спорта.

Как определить соотношение волокон?[править | править код]

Воспользуйтесь специальной разработанной экспертной системой, которая предложит выполнить вам несколько измерений, автоматически проанализирует их и выдаст адаптированный результат. Эта система имеет очень низкую погрешность, так как использует сразу несколько критериев расчета.

Данная экспертная система проводит расчет по нескольким важнейшим критериям: соотношение различных типов волокон, окружность запястья, скорость метаболизма, наличие заболеваний, длина мышцы и др.

Автор: Кирилл Агогэ

В рунете существует система взглядов на рост медленных волокон (далее ММВ, они-же тип I):

  1. Они не растут от больших весов
  2. Они не растут от работы на полную амплитуду, так как нужна особая амплитуда для их роста, работа без расслабления мышц
  3. Для медленных волокон нужны медленные движения
  4. Невозможна смена типа волокна с II на I
  5. Отдельной темой является прием фармакологии для их роста и роста выносливости
  6. Работа низкой интенсивности (на АнП и ниже АнП) рекрутирует только медленные волокна, а спринты, предельные ускорения — все волокна

Читайте: статодинамика и статодинамические упражнения для тренровки ОМВ по Селуянову.

Медленные волокна не растут от больших весов[править | править код]

Медленные волокна гипертрофируются от работы и с малыми, и с большими и со средними весами.[2] Более того, обнаружены случаи, когда в течение одного года, наблюдая за реакцией пожилых людей на тренировку, ничего кроме роста медленных волокон у них не было от работы с 75% от 1ПМ, и лишь к концу года к росту медленных волокон добавился рост быстрых.[3] Изучения синтеза белка, расхода аминокислот, активации клеток сателлитов также показывают, что медленные волокна реагируют точно также как и быстрые на работу с 70-80% от 1ПМ.[4][5][6]

Также существует факт смены цепочек миозина и типа волокон по скорости сокращения от тренировки, равно как и от отсутствия тренировок из-за травм и гиподинамии. Причем именно работа с большими весами снижает уровень миозина IIX.[7]

Работая с маленькими весами вы не повышаете рост медленных волокон, а, скорее, снижаете эффективность роста быстрых волокон. Но они, по-прежнему, активируются и растут даже от маленьких весов, особенно в тройных подходах один за другим. Помимо того, что от больших весов идет рост медленных волокон, но от них еще идет и рост ядер в клетках.[8]

Также работа с большими весами у тяжелоатлетов не только ведет к смене скорости сокращения мышц, но и вызывает рост митохондрий.[9] Но это происходит без роста МПК, что указывает на недостаточность одного лишь роста митохондрий и смены типа волокон. И подчеркивает, что нужна транспортная система для кислорода, которая не появляется просто от того, что у вас есть медленные волокна и митохондрии.

Медленные волокна не растут от работы на полную амплитуду[править | править код]

Мы уже знаем, что медленные волокна гипертрофируются от любых весов при любой амплитуде. При работе с маленьким весом без расслабления мышц вы по-прежнему тренируете все свои мышцы, просто они включаются не сразу, если вес мал, а постепенно.[10] Лишь по мере продолжения подхода, или серии подходов всё новые и новые быстрые волокна типа II включаются в работу. Взяв 50% от 1ПМ без расслабления мышц, можно сказать, что вы тренируете сразу все свои волокна. Польза пампинга не столько в росте медленных волокон, сколько в массе других положительных эффектов, например, ангиогенезе (капилляризации)[11], в артериогенезе (стимуляции коллатералей[12], улучшении кровоснабжения мышц). Потенциально, ишемия мышц может стимулировать и эритропоэз, рост объема крови. Т.е. пампинг — это полезное средство для развития транспортных систем, для роста выносливости. И это среди прочих полезных средств упоминается в обзорах.[13][14][15][16][17][18][19]

Невозможна смена типа волокна со II на I[править | править код]

Действительно, мышечная композиция — это генетика. Но генетика мотонейрона, если вы им не пользуетесь, например, вследствие лежачего образа жизни или травм, ведет к тому, что медленные волокна становятся быстрыми, а после возврата к тренировкам — опять медленными. Также на мышечную композицию[20] могут влиять электростимуляция[21] и состояние щитовидной железы. Если вследствие мутаций у вас нарушено преобразование быстрых волокон в медленные[22], то рост капилляров и митохондрий будет бесполезен.[23]

Прием фармакологии для роста медленных волокон и роста выносливости[править | править код]

Если мышцы не растут, то зачастую их рост начинают стимулировать приёмом курса тестостерона. НО! У медленных волокон реакция рецепторов на изменение уровня тестостерона отсутствует. Они реагируют на гормон роста, ИФР-1, инсулин[24]. Это не значит, что их надо принимать, чтобы стать выносливее. Приём тестостерона[25], равно как и ГР, нарушает работу митохондрий, а последующее обнуление тестостерона[26] после прекращения курса дополнительно бьет по митохондриям. Надо лишь иметь здоровые естественные уровни гормонов, и этого достаточно для здоровья митохондрий.[27][28][29] Не менее важным является и состояние щитовидной железы для здоровья митохондрий.[30] Например, у женщин есть гипертрофия мышц от эстрогена, и именно по рецепторам эстрогена «работает» экдистерон.[31][32]

Работа низкой интенсивности рекрутирует медленные волокна[править | править код]

В ряде исследований существуют утверждения, что при низкой интенсивности работы тратится жир и гликоген только в медленных волокнах, а при предельной интенсивности — во всех волокнах. Но в чём секрет прогресса от объемных, низкоинтенсивных тренировок? Дело в том, что по мере истощения гликогена всё новые и новые волокна включаются в работу[33][34][35][36], и если новичку достаточно 30-60 минут[37] для проработки всех свои мышц, то профессиональному спортсмену (в видах спорта на выносливость) для истощения гликогена придется либо делать много спринтов[38] либо дольше выполнять объемную тренировку. Не зря находят корреляцию активности PGC-1 со степенью истощения гликогена[39]. Спринты не стимулируют рост ОЦК и гемоглобиновой массы[40], а объемные тренировки — да[41].

Также важно подобрать оптимум отдыха и времени спринтов для получения эффекта от тренировок, причём индивидуально.[42] Спортсмены элитного уровня в ЦВС делают большие объемы тренировок, и, понимая, что они рекрутируют 100% мышечных волокон, становится ясно, почему они получают от них результат.[43] Интервалы же для нетренированных активных людей не имели никакого преимущества перед объемными тренировками.[44]

Для медленных волокон нужны медленные движения[править | править код]

Разница в скорости сокращений между 2 типами мышечных волокон не имеет никакого значения при силовых тренировках со штангой. Можно научиться включать быстрые сокращения без медленных, но это будет иметь нулевой практический смысл в культуризме[45], так как единственное значение в скорости сокращения заключается в том, что быстрые волокна при резких движениях могут рекрутироваться раньше медленных, медленные могут раньше отключаться[46]. То есть дерганые движения с маленькими весами прорабатывают не медленные, а быстрые волокна, но это несущественно в рамках того, что работа без расслабления мышц всё равно будет включать быстрые волокна. Также то, что быстрые волокна при быстрых движениях рекрутируются раньше медленных, может объяснить нам, почему люди с большой долей ММВ прыгают низко, а с большой долей быстрых — высоко[47][48].

  1. ↑ также именуемые промежуточные мышечные волокна (ПМВ)
  2. ↑ http://www.nauchforum.ru/ru/node/6180
  3. ↑ http://www.ncbi.nlm.nih.gov/pubmed/8282977
  4. ↑ http://www.ncbi.nlm.nih.gov/pubmed/22327327
  5. ↑ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156941/
  6. ↑ http://www.ncbi.nlm.nih.gov/pubmed/18931969
  7. ↑ http://www.ncbi.nlm.nih.gov/pubmed/18787090
  8. ↑ Responses of knee extensor muscles to leg press training of various types in human. Netreba A1
  9. ↑ Staron, R.S. Human Skeletal Muscle Fiber Type Adaptability to Various Workloads / R.S. Staron, R.S. Hikida, F.C. Hagerman, G.A. Dudley, T.F. Murray
  10. ↑ Blood Flow Restriction Exercise in Sprintersand Endurance Runners 2013 год
  11. ↑ 2012, Exercise intensity and muscle hypertrophy in blood flow–restricted limbs and non-restricted muscles: a brief review
  12. ↑ http://www.ncbi.nlm.nih.gov/pubmed/2262453
  13. ↑ https://pp.vk.me/c623130/v623130613/3f1c3/KoYkRQMSdnU.jpg
  14. ↑ The Use of Occlusion Training to Produce Muscle Hypertrophy Jeremy Paul Loenneke, BS and Thomas Joseph Pujol, EdD, CSCS Department of Health, Human Performance, and Recreation, Southeast Missouri State University, Cape Girardeau, Missouri
  15. ↑ H.T. YANG1 , B.M. PRIOR2 , P.G. LLOYD3 , J.C. TAYLOR4 , Z. LI1 , M.H. LAUGHLIN1 , R.L. TERJUNG1 TRAINING-INDUCED VASCULAR ADAPTATIONS TO ISCHEMIC MUSCLE
  16. ↑ http://www.ncbi.nlm.nih.gov/pubmed/? term=Muscle+oxidative+capacity+and+work+performance+after+training+under+local+leg+ischemia
  17. ↑ http://www.ncbi.nlm.nih.gov/pubmed/?term=Hemodynamic+and+hormonal+responses+to+a+short-term+lowintensity+resistance+exercise+with+the+reduction+of+muscle+blood+flow
  18. ↑ http://www.ncbi.nlm.nih.gov/pubmed/23412543
  19. ↑ http://www.ncbi.nlm.nih.gov/pubmed/11990743
  20. ↑ http://1belok.ru/o/425/smena-tipa-myshechnykh-volokon/
  21. ↑ http://1belok.ru/o/395/10-gerts-delayut-bmv-medlennymi/
  22. ↑ http://1belok.ru/o/319/transkriptsionnyy-koaktivator-alfa-pgc-1-stimuliruet-formirovanie-medlennykhmyshechnykh-volokon/
  23. ↑ http://1belok.ru/o/320/odin-polimorfizm-nukleotida-gly482ser-v-pgc-1-gene-ukhudshaet-vyzvannoeuprazhneniem-preobrazovanie-myshechnogo-volokna-v-medlennyy-okislitelnyy-tip-u-lyudey/
  24. ↑ http://1belok.ru/o/390/retseptory-k-gormonam/
  25. ↑ http://1belok.ru/o/347/testosteron-transseksualy-i-mitokhondrii/
  26. ↑ http://1belok.ru/o/348/snizhenie-testosterona-i-mitokhondrii/
  27. ↑ http://1belok.ru/o/351/nizkiy-testosteron-i-bolezni-mitokhondriy/
  28. ↑ http://1belok.ru/o/349/mitokhondrii-testosteron-i-zhiroszhiganie/
  29. ↑ http://1belok.ru/o/350/testosteron-i-starye-myshi/
  30. ↑ http://1belok.ru/o/310/regulyatsiya-sinteza-mtdnk-shchitovidnoy-zhelezoy/
  31. ↑ https://pp.vk.me/c623130/v623130655/407c7/ZmDTPb4SMmo.jpg
  32. ↑ http://1belok.ru/o/372/ekdisteron-vs-farma/
  33. ↑ http://www.ncbi.nlm.nih.gov/pubmed/6524389/
  34. ↑ Recruitment pattern of muscle fibre type during high intensity exercise (60–100% VO 2 max) in Thoroughbred horses S. Yamano a , D. Eto b , A. Hiraga b , H. Miyata
  35. ↑ 8 https://pp.vk.me/c627718/v627718790/178e3/XOq22e-3vXk.jpg https://pp.vk.me/c627718/v627718790/178ea/YLlNGhYRgvM.jpg https://pp.vk.me/c627718/v627718790/178f5/AnznAlohaxs.jpg Sarcoplasmic Reticulum Ca2+-ATPase Activity and Glycogen Content in Various Fiber Types after Intensive Exercise in Thoroughbred Horses Yoshio MINAMI1, Seiko YAMANO2, Minako KAWAI1, Atsushi HIRAGA3 and Hirofumi MIYATA1*
  36. ↑ http://www.ncbi.nlm.nih.gov/pubmed/25640469
  37. ↑ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047011/
  38. ↑ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013969/
  39. ↑ https://pp.vk.me/c627718/v627718790/17897/JjA7i3gyStg.jpg
  40. ↑ http://www.ncbi.nlm.nih.gov/pubmed/26282186
  41. ↑ http://www.ncbi.nlm.nih.gov/pubmed/26164709
  42. ↑ http://www.ncbi.nlm.nih.gov/pubmed/20424855/
  43. ↑ https://vk.com/agogee?w=wall-73104052_2118
  44. ↑ Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials.Milanović Z1, Sporiš G, Weston M.
  45. ↑ http://1belok.ru/o/334/rekrutirovanie-myshts/
  46. ↑ http://jeb.biologists.org/content/217/19/3528
  47. ↑ http://1belok.ru/o/407/otlichiya-elitnykh-sportsmenov-na-vynoslivost-i-silu/
  48. ↑ http://bmsi.ru/doc/4bb5f9c6-ff73-4376-8cbd-849aa9093194

sportwiki.to

Функции и строение мышц. Виды мышечных волокон. Адаптационные процессы в мышцах. Виды мышечных сокращений и способы выполнения силовых упражнений.Виды мышечного отказа.

 

Часть пособия по натуральному тренингу.

 

Автор пособия Южаков Антон.

Ссылка на скачивание пособия в PDF

Ссылка на скачивание программы тренировок с пособия в xlsx

 

Содержание пособия:

 

Содержание разбито на несколько страниц с одним содержанием, чтобы читать, можно скачать, по ссылкам выше или читать, переходя по ссылка содержания. 

 

Предисловие.

1. Мышцы.

1.1 Функции и строение мышц.

1.2 Виды мышечных волокон.

1.3 Адаптационные процессы в мышцах.

1.4 Виды мышечных сокращений и способы выполнения силовых упражнений. 

1.5 Виды мышечного отказа.

2. Структура тренировки.

2.1 Методы повышения интенсивности. 

2.2 Статодинамика.

3. Предисловие к натуральному тренингу.

3.1 Основы натурального тренинга и периодизация.

3.2 Подготовительный период. 

3.3 Период по развитию силовых качеств. 

3.4 Период по развитию силовой выносливости.

3.5 Период по набору мышечной массы.

3.6 Период по уменьшению количества подкожного жира. 

3.7 Восстановительный или реабилитационный период.

4. Готовая программа тренировок.

5. Ссылки на источники.

6. Обращение от автора.

 

1. Мышцы.

 

Мышцы или мускулы (от лат. musculus — мышца) — органы тела животных и человека, состоящие из упругой, эластичной мышечной ткани, способной сокращаться под влиянием нервных импульсов. Предназначены для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. 

 

мышцы

1.1 Функции и строение.

 

мышц

Основная функция скелетных мышц человека – перемещение тела в пространстве. Следует помнить, что мышцы при сокращении тянут, а не толкают (мышца резина, а не пружина) – это единственный вид сокращения мышцы. 

 

Строение мышцы:

 

  • Мышцы крепятся к кости или к другой мышце с помощью сухожилья.
  • Мышца находиться в оболочке – фасции.
  • Мышца состоит из пучков мышечных волокон.
  • Пучок мышечных волокон состоит мышечных волокон.
  • Мышечное волокно состоит из миофибриллы и ядра.
  • Миофибрилла состоит из оболочки, миозина и актина.

Сокращение мышцы:

 

  1. Мозг дает сигнал по мотонейрону к мышечному волокну, чтобы оно сокращалось.
  2. Мышца получает сигнал для сокращения и начинает сокращаться.
  3. При сокращении нити актина «скользят» между нитями миозина используя для этого энергию (АТФ).
  4. После нити актина возвращаются в исходное положение.  

Мышечное энергообеспечение.

 

Использование запасов АТФ в мышце – АТФ в мышце хватает на доли секунд при проявлении максимального усилия.

 

Креатинкиназная реакция – реакция ресинтеза АТФ с помощью креатинфосфата + АДФ, данный источник энергии хватает на несколько секунд (8-10 секунд). Включается практически моментально и быстро выключается, на смену ему приходит анаэробны гликолиз.

 

Анаэробный гликолиз – процесс образования АТФ с глюкозы без участия кислорода. Активно включается в работу через несколько секунд и длительность порядка 40-80 секунд. После 30-40 секунд из-за закисления клетки анаэробный гликолиз постепенно начинает выделять меньшее количество АТФ и на его смену приходит Аэробный гликолиз.

 

Аэробный гликолиз – процесс образования АТФ с глюкозы с участием кислорода. Основным источником энергии становиться примерно после 80 секунд активной работы. После истощения запасов гликогена основной источник энергии — жирные кислоты, а на смену аэробному гликолизу приходит окисление жирных кислот. В силовом тренинге не используется.

 

Окисление жирных кислот – процесс преобразования жирных кислот в АТФ с использованием кислорода. В силовом тренинге не используется. 

 

От автора: Понимать процессы энерообеспечения мышц очень важно. Именно по энерообеспечению  различают виды мышечной работы и развитие физических качеств. Так за силовые качества отвечает больше креатинкиназная реакция, за силовую выносливость – анаэробный гликолиз. А за выносливость аэробный гликолиз и окисление жирных кислот.

 

Поэтому при силовой работе на 1 повтор работает в основном креатинкиназное энергообепечение, и истощаются запасы собственного АТФ в мышце. На 2-6 повторов, если вложиться в 10 секунд, работает именно креатинкиназное энерообеспечени и частично анаэробный гликолиз. На 6-20 повторов большую часть энергии дает именно анаэробный гликолиз, так как креатинкиназное энерообеспечение отключиться примерно через 4-8 повторов. Аэробный гликолиз практически не участвует силовой работе, а только при тренировке выносливости, обычно он активно включается в энерообеспечение только после истощения анаэробного энерообепечения, что примерно через 40-80 секунд, в зависимости от степени нагрузки. А вот окисление жирных кислот включается только после практически полного истощения запасов гликогена, данный процесс наступает в зависимости от степени нагрузки и запасом гликогена.

 

Отдельно следует сказать, что такая последовательность включения различных систем энергообеспечения актуально только, если нагрузка будет 100%. Если давать не максимальную нагрузку, в таком случае могут включаться не все двигательные единицы (не все части мышцы) одновременно, а только часть. И в такой ситуации каждая система энергообеспечения может работать намного длительней, так как к работе будут подключаться «новые и свежие» двигательные единицы, когда старые, которые выполняли работу, уже «устали». 

 

1.2 Виды мышечных волокон.

мышц

Основные классификации мышечных волокон:

 

  • Белые и красные мышечные волокна;
  • Быстрые и медленные мышечные волокна; 
  • Гликолитические, промежуточные и окислительные мышечные волокна; 
  • Высокопороговые и низкопороговые мышечные волокна. 

Белые и красные мышечные волокна. 

 

Первая классификация – по цвету. Это классификация по наличию пигмента миоглобина в саркоплазме мышечного волокна. Миоглобин красного цвета и он участвует в переносе кислорода к мышечной клетке. Чем больше кислорода требуется клетке, тем больше поступает миоглобина —  волокно более красное. Когда меньше кислорода — волокно более светлое, от чего – белое. Также красные мышечные волокна имеет большее число митохондрий, чем белые, из-за большого потребления кислорода.

 

Белые мышечные волокна:

 

  • Миоглобина – мало.
  • Митохондрий – мало.
  • Потребление кислорода – малое.

Красные мышечные волокна:

 

  • Миоглобина – много.
  • Митохондрий – много.
  • Потребление кислорода – большое.

Быстрые и медленные мышечные волокна.

 

Вторая классификация — по скорости сокращения. Быстрые и медленные мышечные волокна классифицируются по скорости сокращения и активности фермента АТФ-азы. Фермент АТФ-аза участвует в образовании АТФ и соответственно в сокращении мышцы. Когда чем более активный фермент, тем быстрей синтезируется АТФ и мышца снова готова сокращаться.

 

Быстрые мышечные волокна:

 

  • Скорость сокращения мышечного волокна более высокая.
  • Активность фермента АТФ-аза более высокая.

Медленные мышечные волокна:

 

  • Скорость сокращения мышечного волокна более низкая.
  • Активность фермента АТФ-аза низкая.

Гликолитические, промежуточные и окислительные мышечные волокна. 

 

Третья классификация – по энергообеспечению. Для получения энергии мышечные волокна используют жирные кислоты (жиры) и глюкозу (углеводы).  Жирные кислоты с помощью окисления организм превращает в АТФ с помощью окисления. Глюкозу с помощью анаэробного и аэробного гликолиза также превращает в АТФ. Поэтому в организме существует три вида различных мышечных волокон, которые используют преимущественно один из видов энергообеспечения.

 

Окислительные мышечные волокна (ОМВ):

 

  • Основной источник энергии – жирные кислоты.
  • Энергообеспечение – окисление.
  • Количество митохондрий – много.

Промежуточные мышечные волокна (ПМВ):

 

  • Основной источник энергии – жирные кислоты, глюкоза.
  • Энергообеспечение – окисление, гликолиз.
  • Количество митохондрий – среднее количество.

3. Гликолитические мышечные волокна (ГМВ):

 

  • Основной источник энергии – глюкоза.
  • Энергообеспечение – гликолиз, преимущественно анаэробный.
  • Количество митохондрий – мало.

 

Отдельно следует поговорить о ПМВ.  Данный тип мышечных волокон очень хорошо адаптируется к нагрузке, в отличие от ОМВ и ГМВ. При длительных тренировках данные мышечные волокна могут приобретать больше признаков ОМВ или ГМВ. К примеру, если тренировать выносливость (бегать марафоны и топу подобное), в таком случае практически все ПМВ станут ОМВ, за счет увеличения количества митохондрий. При силовых тренировках МПВ перестраиваться в ГМВ, адаптируясь под соответственный вид тренировок.

Высокопороговые и низкопороговые мышечные волокна. 

 

Четвертая классификация – по порогу возбудимости двигательных единиц (ДЕ). Двигательная единица состоит из: мотонейрона и мышечного волокна.  Сокращение мышцы происходит под воздействием нервных импульсов, которые проводят нервные клетки от головного мозга к мышце, давая ей команду сокращаться.

 

Высокопороговые мышечные волокна:

 

  • Порог возбудимости – высокий (сокращаются при сильном импульсе, когда очень тяжело).
  • Скорость передачи нервного импульса – высокая.
  • Аксон с миелиновой оболочкой.

Низкопороговые мышечные волокна:

 

  • Порог возбудимости – низкий (сокращаются при слабом импульсе.).
  • Скорость передачи нервного импульса – низкая.
  • Аксон без миелиновой оболочкой.

Объединение классификаций.

 

Белые быстрые высокопороговые гликолитические мышечные волокна (далее вГМВ):

 

  • Цвет – белый.
  • Скорость – большая.
  • Основное энергообеспечение – анаэробный гликолиз.
  • Порог возбудимости – высокий.
  • Аксон – с миелиновой оболочкой.
  • Количество митохондрий – мало.
  • Количество мышечных волокон в организме – заложено генетикой (это не факт, так как сейчас есть теория, по которой происходит миелинизация мотонейрона от тренировочной нагрузки).

Данный вид мышечных волокон, у людей, не занимающихся спортом, практически некогда не принимает участие в сокращении мышцы. Данные мышечные волокна включаются в работу только в экстремальных условиях на очень короткое время. У спортсменов занимающихся анаэробными видами спорта данные мышечные волокна активно принимают участие в сокращении при пиковых нагрузках (90-100% от ПМ, обычно это 1-3 повтора).

 

Белые быстрые гликолитические мышечные волокна (далее ГМВ):

 

  • Цвет – белый.
  • Скорость – большая.
  • Основное энергообеспечение – анаэробный гликолиз, частично аэробный.
  • Порог возбудимости – средний (ниже вГМВ, выше ПМВ).
  • Аксон без миелиновой оболочкой.
  • Количество митохондрий – мало.
  • Количество мышечных волокон в организме – различное (ПМВ превращаются в ГМВ при силовых тренировках).
  • ГМВ основа всей мышечной массы. Даже если у человека преобладают ОМВ по количеству, весь основной объем мышцы будет за счет именно ГМВ, так как эти мышечные волокна намного больше в объеме всех остальных. ГМВ включаются в работу практически во всех силовых упражнениях.

Промежуточные (могут быть как белые, так и красные) мышечные волокна (далее ПМВ).

 

  • Цвет – белый, красный.
  • Скорость сокращения – низкая, высокая (некоторые исследования подтверждают, что активность фермента АТФ-азы не может меняться от тренировки, потому возможно ПМВ, которые превратились в ГМВ остаются медленными).
  • Основное энергообеспечение – анаэробный гликолиз, аэробный гликолиз, окисление.
  • Порог возбудимости – средний (ниже вГМВ, ГМВ, выше ОМВ).
  • Аксон – без миелиновой оболочкой.
  • Количество митохондрий – средне (зависит от тренированности человека).
  • Количество мышечных волокон в организме – различное, (много у нетренированных людей, у тренированных ПМВ превращаются в ГМВ или ОМВ).

ПМВ это что-то усредненное между ГМВ и ОМВ, они использую энергообеспечение как и ОМВ, так и ГМВ. Особая способность этих мышечных волокон – приобретение признаков ОМВ или ГМВ в зависимости от нагрузки. Если идет анаэробная нагрузка и нужен больше гликолиз – ПМВ превращаются в ГМВ. Если человек получает аэробную нагрузку – ПМВ превращаются в ОМВ.

 

Красные медленные окислительные мышечные волокна (далее ОМВ):

 

  • Цвет – красный.
  • Скорость сокращения – низкая.
  • Основное энергообеспечение – окисление.
  • Порог возбудимости – низкий.
  • Аксон – без миелиновой оболочкой.
  • Количество митохондрий – много.
  • Количество мышечных волокон – различное, промежуточные мышечные волокна превращаются в ОМВ при тренировках на выносливость.

1.3 Адаптационные процессы в мышцах.

мышцы

Наш организм очень сложный, в нем происходит невероятное количество различных процессов каждую долю секунды, для поддержания жизнедеятельности. Данные процессы является адаптацией организма к раздражителям внешней среды. Далее будут описываться основные адаптационные изменения в мышцах при тренировках.

 

От автора: Процесс гиперплазии (делении мышечной клетки) не будет рассмотрен, связано это с тем, что данный процесс научно не обоснован, а все научные доводы крайне сомнительные. Поэтому будем рассматривать то, что хорошо известно и проверено на практике.

 

Для начала следует разобраться в процессе роста мышечной клетки. Как и почему она увеличиваться в размерах и что для этого нужно. Наш организм все время находится в гомеостазе (постоянстве), и любой стресс для него – проблема, с которой нужно справиться. Организм не любит стресса, он любит постоянство, а тренировка – стресс. Справляться организм будет следующий образом – создавать запас «прочности» для будущего внезапного стресса, а рост мышечной клетки и есть тот запас прочности для будущего стресса. Любой тренировочный стресс (стресс от силовой тренировки) для мышцы запускает мышечный рост, но для мышечного роста нужно полноценное восстановление.

 

Рост мышечных клеток.

 

Для того, чтобы мышечная клетка могла полноценно адаптироваться под нагрузку, своим ростом, есть ряд факторов, которые должны присутствовать в клетке (иногда их так и называют – факторы роста).

 

Факторы роста:

 

  • Аминокислоты – основной элемент построения всех белков животных и растительных организмов. 
  • Анаболические гормоны – тестостерон, гормон роста и инсулин. 
  • Свободный креатин – азотсодержащая карбоновая кислота.
  • Ионы водорода – простейший двухатомный ион h3+.

Все эти элементы должны присутствовать в клетке, для ее полноценного роста. Причем важна именно определенная концентрация каждого элемента, поэтому следует все разобрать подробнее.

 

Аминокислоты являются основным строительным материалом для полноценного роста мышечной клетки. Так как сократительная часть клетки, которая подвержена росту, состоит преимущественно из белков. При этом если аминокислот будет избыток, те аминокислоты, которые организм не сможет использовать на строительный материал, будут использоваться в качестве источника энергии. Поэтому следует понимать, что слишком большой избыток аминокислоты не приведет к ускорению мышечного роста.

 

Анаболические гормоны, а в первую очередь именно тестостерон, одни из важнейших факторов для мышечного роста. Именно тестостерон после попадания в клетки воздействует на ДНК клетки и запускает мышечный рост.

 

  • Тестостерон – воздействует на ДНК, повышает анаболизм.
  • Гормон роста – воздействует на рецепторы (трансмембранный белок), и повышает анаболизм.
  • Инсулин – воздействует на рецепторы мембраны клеток, улучшая проницаемость клеточных мембран, улучшает поступление аминокислот, глюкозы и микро и макроэлементов в клетку.

Свободный креатин появляется благодаря мышечному сокращению. При мышечном сокращении ресинтез АТФ происходит благодаря запасам креатинфосфата (Креатинкиназная реакция), что ведет к появлению свободного креатина. При этом повышенная концентрация свободного креатина в саркоплазматическом пространстве служит мощным эндогенным стимулом, возбуждающим белковый синтез в скелетных мышцах.

 

Ионы водорода активно появляются при разрушении молочной кислоты на лактат и ионы водорода. Ионы водорода по мере накопления разрушают связи в четвертичных и третичных структурах белковых молекул, это приводит к изменению активности ферментов, облегчению доступа гормонов к ДНК.


Следует понимать, что ионы водорода при большой концентрации могут разрушать мышечные клетки, поэтому их концентрации должна быть умеренной. В данном случае больше – не значит лучше.

 

С современными знаниями и препаратами человек может контролировать все четыре фактора отвечающие за мышечный рост. Концентрацию аминокислот можно поддерживать правильным питание богатым полноценными аминокислотами. Не смотря на то, что уровень тестостерона заложен генетически, и на него повлиять крайне сложно, силовые тренировки способствуют лучшему поступлению тестостерона в кровь. Также и свободный креатин, и ионы водорода способны выделяться только при силовых тренировках.

 

Отличия тренировок для «натурального» роста мышц и для «химического».

 

Пока не отошли далеко от темы, нужно рассказать, чем отличается гипертрофия при натуральных тренировках и при «химических».

 

Натуральному спортсмену более важно выделить большое количество свободного креатина, но при этом количество ионов водорода должно быть не в очень большом количестве, так как они будут сильно разрушать мышечную клетку. Также тестостерон не имеет такого большого значения, как при «химическом» тренинге, так как его концентрация не большая, и соответственно не нужно так много ионов водорода. Поэтому весь тренинг для набора мышечной массы должен быть построен преимущественно на креатинфосфатном энергообеспечении, для поднятия большей концентрации свободного креатина. В связи с этим оптимальное время для выполнения упражнений 8-10 секунд. Но, естественно необходимо и выполнять упражнения в диапазоне 20-30 секунд, при котором работает анаэробный гликолиз, для увеличения концентрации ионов водорода.

 

При этом «химикам» необходимо наоборот работать более в анаэробном гликолизе и стараться максимально увеличить концентрацию ионов водорода, чтобы «открыть» доступ тестостерону к ядру клетки. Поэтому становиться понятно, почему профессионалы так любят «пампинг». Во-первых, при «пампинге» сильно увеличивается кровоток, и поступают гормоны и аминокислоты к клетке. А во-вторых – «пампинг» очень сильно закисляет мышцы, идут большие энерготраты и повышается количество молочной кислоты, соответственно и ионов водорода. «Химикам» не следует сильно бояться закисления и разрушения мышечной клетки, так как положительный анаболизм от гормонов приведет к существенному росту мышечной клетки.

 

Теория мышечного роста, которые нынче не актуальны. 

 

Теория разрушения – устаревшая теория, по которой микротравмы миофибрилл ведут к их суперкомпенсаи и росту.

 

Суть данной теории заключается в том, что при тренировке идут микротравмы мышечного волокна, которые при восстановлении увеличиваются в объеме с неким запасом прочности, тем самым увеличиваются в объеме. Обычно адепты данной теории рекомендуют тренироваться так, чтобы на следующий день была крепатура (мышечная боль), если же боли после тренировки нет, значит, тренировка несла слабое раздражение и была не эффективна. На самом деле данная теория не верна, по той причине, что многие не понимают причину пост тренировочной боли.

 

Пост тренировочная боль и правда возникает из-за микротравм миофибрилл, но сама боль не ведет к росту мышечной клетки. Крепатура возникает из-за различной длинны миофибрилл, которые сокращаясь не равномерно травмируются. После определенного тренировочного стажа все миофибриллы становятся равномерной длинны, что приводит к распределению нагрузки на них равномерно, поэтому микротравмы не происходят, и пост тренировочной боли практически нет. Но, человек все равно продолжает набирать мышечную массу.

 

От автора: «No pain no gain» — старое американское выражение, которое переводиться как: «Без боли нет роста». Было очень популярно в Америке, во времена золотой эры бодибилдинга. В то время как раз теория разрушения была актуальна, и все тренировались в очень больших объемах, чтобы максимально сильно микротравмировать мышцы и на следующий день получить мышечную боль.

 

От автора: Были исследования икроножных мышц олимпийских марафонцев непосредственно после забега. И исследования показали сильные повреждения икроножных мышц (большое количество микротравм миофибрилл), но при этом их мышцы не увеличиваются в размерах, а только становятся выносливее, за счет роста количества митохондрий.

 

Саркоплазматическая гипертрофия – увеличение размеров мышцы за счет роста саркоплазмы (не сократительного элемента клетки).

 

Даная теория ошибочная, саркоплазма занимает всего 10% от общей массы мышечной клетки, а миофибриллы практически 90%. И при этом большая часть саркоплазмы занимает именно гликоген. Естественно по мери тренированности запасы гликогена в мышцах увеличиваться, но их увеличение не существенное и сильно повлиять на размер мышцы не может.

 

Поэтому при силовом тренинге основной рост мышечной клетки идет именно за счет увеличения миофибрилл – сократительных элементов клетки, не сократительные элементы (саркоплазма) практически не влияют на размер мышцы.

 

Также адепты теории саркоплазматической гипертрофии часто используют «пампинг», аргументируя это тем, что большие энерготраты при «пампинге» ведут к истощению запасов гликогена и увеличению саркоплазмы. И «пампинг» действительно работает, в прошлой главе было подробно рассказано, но он ведет к миофибриллярной гипертрофии, а не саркоплазматической.

 

От автора: Все циклические виды спорта имеют намного больше запасы гликогена, чем тяжелоатлеты, так как используют преимущественно гликолиз. Использование гликолиза и истощение запасов гликогена ведет к суперкомпенсации по гликогену, в то время как тяжелоатлеты используют креатинфосфат как энергообеспечение, и запасы гликогена у них меньше. Поэтому саркоплазма более гипертрофирована (из-за запасов гликогена) у циклических видов спорта, но при этом тяжелоатлеты все равно имеют большую мышечную массу.

 

1.4. Виды мышечных сокращений и способы выполнения силовых упражнений.

мышцы

Виды работы мышцы:  

 

  • Статическая (удерживающая) работа – мышца не меняет длины под нагрузкой.
  • Динамическая преодолевающая работа – мышца укорачиваться под нагрузкой.
  • Динамическая уступающая работа – мышца растягивается под нагрузкой.

Виды мышечных сокращений: 

 

  • Изотоническое сокращение – мышца укорачивается при постоянной нагрузке (такое бывает только в лабораторных условиях).
  • Изометрическое сокращение – напряжение возрастает, длина мышцы не меняется.
  • Ауксотоническое сокращение – напряжение мышцы изменяется по мере ее укорочения.

Примеры: 

 

  1. Если остановить штангу в любой точки амплитуды и зафиксировать – это статическая работа грудной мышцы (трицепсов и дельты) и изометрическое сокращение.
  2. Опускание штанги – динамическая уступающая работа и ауксотоническое сокращение грудных мышц, после начала выжимания штанги – динамическая преодолевающая работа и ауксотоническое сокращение.

Способы выполнения силовых упражнений. 

 

Теперь перейдем к силовым упражнениям. Упражнения могут выполняться различными способами. Способы выполнения упражнений носят различный характер нагрузки на мышцы, задействуют разные мышечные волокна.

 

Амплитуда движения – это некая вылечена (длина), на которую может растянуться мышцы.

 

Амплитуда движения:

 

  • Полная, ограничения растяжением мышцы (пример: жим гантелей – амплитуда ограничена растяжением мышцы).
  • Полная, ограничения спортивным снарядом, таким как гриф, тренажер (пример: жим штанги лежа – амплитуда ограничена грифом).
  • Короткая, 1 — внутри амплитуды, на растянутой мышце (пример: жим лежа не выпрямляя локти). 2 — в полную амплитуду, но низ амплитуды чем-то ограничен (пример: жим с бруса).

Способы выполнения упражнений. 

 

Силовой способ выполнения упражнения – классический метод выполнения упражнения.

 

  • Вид работы мышцы и вид мышечного сокращения – динамическая преодолевающая и уступающая работа в ауксотоническом сокращении.
  • Скорость выполнения упражнения – при растяжении средняя или медленная скорость, при сокращении – средняя или высокая скорость.
  • Амплитуда движения – полная, которую позволят растяжение мышцы или спортивный снаряд.
  • Наличие мышечного отказа – не обязательно (отказ может использоваться как метод повышения интенсивности).
  • Акцент на мышечные волокна – вГМВ – если вес близок к максимуму, а время выполнения упражнения порядка 8-10 секунд, ГМВ – если вес близок к максимуму, а время выполнения упражнения примерно 30-40 секунд.

Классический силовой способ выполнения упражнение наиболее эффективен как для набора мышечной массы, так и для развития физических качеств (силы или силовой выносливости). При этом данный метод максимально эффективен как для натурального спортсмена, так и для человека использующего допинг. Силовой способ выполнения упражнения вызывает микротравмы миофибрилл, что приводит к их суперкомпенсации. Так и при большом количестве повторов и подходов может закислять (молочной кислотой) мышечное волокно, что ведет к разрушению молочной кислоты и увеличению ионов водорода, которые способствую мышечному росту.

 

«Памповый» способ выполнения упражнения (pumping — от анг. накачка) – метод позволяющий ограничить доступ крови к мышечной группе, тем самым закисление мышцы идет сильнее. Основное отличие от силового метода в том, что увеличивается скорость выполнения упражнения, и сокращается амплитуда движения.

 

  • Вид работы мышцы и вид мышечного сокращения — динамическая преодолевающая и уступающая работа в ауксотоническом сокращении.
  • Амплитуда движения – короткая (работа внутри амплитуды, мышца все время находиться под нагрузкой).
  • Наличие отказа – обязательно (до полного закисления и отказа).
  • Скорость выполнения упражнения — при растяжении – быстро, при сокращении – быстро (в памповой манере скорость больше, чем в силовой манере).
  • Акцент на мышечные волокна – преимущественно ГМВ.  Очень слабо влияет на ОМВ за счет сильного закисления мышечных волокон.

Памповый способ выполнения упражнения крайне слабо травмирует миофибриллы, связано это с тем, что чаще всего вес на снаряде слишком мал, так же большое количество повторов в меньшей степени травмирует миофибриллы, а скорей ведет к более сильному закислению клетки. Также более короткая амплитуда движения, которая частично «перекрывает» кровоток ведет к тому, что кровь не может «вымывать» молочную кислоту, лактат  ионы водорода, на которую она распадается, по этой причине очень сильно закисляется мышца. Помимо этого после выполнения подхода с кровью к клетке поступает большое количество различных веществ, таких как аминокислоты, глюкоза и гормоны. Именно по этой причине пампинг так эффективен в «химическом» бодибилдинге, так как там используется большое количество анаболических гормонов, которые при доставлении их в клетки способствуют мышечному росту. В «натуральном» тренинге пампинг намного менее эффективен и используется крайне редко.

 

«Негативный» способ выполнения упражнения или просто «негативы» – метод позволяющий достигнуть очень сильного мышечного истощения (отказа). 

 

  • Вид работы мышцы и вид мышечного сокращения — динамическая уступающая работа в ауксотоническом сокращении.
  • Амплитуда движения – полная или частичная.
  • Наличие отказа – не обязательно («негативный» отказ очень травмоопасен).
  • Скорость выполнения упражнения — при растяжении – очень медленно, при сокращении – быстро с помощью (помощь обязательна).
  • Акцент на мышечные волокна – вГМВ – если вес близок к максимуму, а время выполнения упражнения порядка 8-10 секунд, ГМВ – если вес близок к максимуму, а время выполнения упражнения примерно 30-40 секунд.

Статический способ выполнение упражнения или просто «статика» — единственный метод выполнения упражнения, при котором нет движения снаряда, также как и «негативы» позволяет достигнуть сильного мышечного истощения (отказа).

 

  • Вид работы мышцы и вид мышечного сокращения – статическая (удерживающая) работа в изометрическом сокращении.
  • Наличие отказа – не обязательно.
  • Скорость выполнения упражнения – неподвижное состояние.
  • Амплитуда – нет амплитуды движения.
  • Акцент на мышечные волокна – вГМВ или ГМВ (в зависимости от времени).

Статодинамический способ выполнения упражнения – довольно новый метод, приобрел популярность благодаря профессору Селуянову. Подробнее про статодинамику будет в отдельной главе.

 

  • Вид работы мышцы и вид мышечного сокращения – динамическая преодолевающая и уступающая работа в ауксотоническом и изометрическом сокращении.
  • Наличие отказа – обязательно (до полного закисления и отказа).
  • Скорость выполнения упражнения — при растяжении – очень медленно, при сокращении – очень медленно.
  • Амплитуда движения – короткая (работа внутри апмлитуды).
  • Акцент на мышечные волокна – ОМВ. 

Негативный и статический способ выполнения упражнения крайне плохо себя зарекомендовал как тренировочный метод для набора мышечной массы. Связано это с тем, что «негативы» и «статика» более эффективны для тренировки суставно-связочного аппарата, микротравмируют сухожилья, что ведет к суперкоменсации. Во-первых — при «негативах» и «статике» небольшие энерготраты, что не ведет к выделению молочной кислоты. А во-вторых — идет большая нагрузка на мышцы, что очень сильно увеличивает шанс травмировать мышечное волокна, сухожилье или суставно-связочный аппарат, поэтому данный метод не используется в бодибилдинге, пауэрлифтинге или тяжелой атлетике. Из всего силового спорта, данные способы выполнения упражнения прижился только в армспорте, где суставно-связочный аппарат и сухожилья имеют большее значение, нежили мышцы.

 

1.5 Виды мышечного отказа.

 

Мышечный отказ – состояние мышц, когда они больше не способны справляться с нагрузкой.

 

Виды мышечного отказа:

 

  • Преодолевающий отказ (динамика)– когда больше невозможно поднять вес (мышцы не могут сократиться).
  • Статический отказ (статика)– когда больше невозможно удерживать вес (мышца не может сокращаться в статическом режиме и начинает расслабляться).
  • Уступающий отказ (негативы) – когда больше невозможно медленно опускать вес (мышца не может справляться с весом даже при растяжении, а не сокращении).

 

Пример выполнения упражнение с наступлением всех трех видов отказа: Человек выполняет жим штанги лежа, при этом выжимает последний раз и больше не может выполнить повторение (наступал преодолевающий отказ). После чего удерживает вес на выпрямленных руках (важно не выпрямлять полностью руки, чтобы нагрузка не уходила в суставы, а оставалась на мышцах), и через некоторое время уже не способен удерживать вес, штанга начинает опускаться (наступил статический отказ). При опускании штанги человек может еще прикладывать усилия для ее замедления (чтобы штанга опускалась медленнее с одинаковой скоростью), после штанга начинает ускоряться, даже при максимальных усилиях ее остановить (наступил уступающий отказ).

 

Физиология мышечного отказа.

 

Преодолевающий отказ (динамика) – может наступать по двум причинам:

 

  • Истощена энергетика и мышцы больше не способны сокращаться.
  • Мышца закислена и больше не может сокращаться.

Статический и уступающий отказ (статика и негативы) – также может наступать по двум причинам.

 

  • Истощена энергетика и мышцы больше не способны сокращаться.
  • Ограничение работы мышцы сухожильным веретеном и органом Гольджи.

Уточнение: Сухожильное веретено и орган Гольджи отвечает за напряжение и растяжение мышцы. В тех случаях, когда мышца максимально растянута или напряжение приходит своему пику – сухожильное веретено и орган Гольджи могут дать сигналы на мотонейроны, чтобы те переставали иннервировать мышцы (стимулировать сокращение). Это необходимо для того, чтобы мышца при напряжении не порвалась или не оторвалось сухожилье от кости.

 

Использование отказа в тренировочном процессе.

 

Мышечный отказ является одним из методов повышения интенсивности тренировки. Поэтому чаще всего используется как дополнительный тренировочный метод. Так как сильный мышечный отказ может сильно удлинить время восстановления после нагрузки. Несомненно, для последующего восстановления важен и общий тренировочный объем (сколько было отказных подходов), но чаще всего при использовании метода отказных повторов, тренировочный объем не большой.

 

Время для полноценного отдыха мышечной группы (и других систем организма) после отказных повторений:

 

  • Преодолевающий отказ – от 7-14 дней. Классический динамический отказ очень сильно «микротравмирует» миофибриллы (сократительные элементы мышечной клетки), также происходит существенная нагрузка на суставно-связочный аппарат и нервную систему.
  • Статический отказ – от 3 до 21 дня. Воздействие на организм статического отказа зависит от времени. Чем больше время перебивания под нагрузкой, тем соответственно меньше использованный вес. Чем больше вес – тем больше нагрузка на суставно-связочный аппарат и дольше восстановление. Также следует учитывать, используется статический отказ после динамического или отдельно.
  • Уступающий отказ – 14-28 дней. Негативный отказ самый тяжелый, он наступает в последнюю очередь и естественно нагрузка на организм от него самая большая. Уступающий отказ может наступить только после статического отказа. Нагрузка на суставно-связочный аппарат очень большая, также и на нервную систему.

От автора: Эти данные были выведены эмпирическим путем благодаря большому количеству людей, которые экспериментируют с мышечными отказами в тренировках. Некоторые данные (по преодолевающему отказу), были публикованы Селуяновым. Также и Майк Ментцер, один из основоположников отказного тренинга в бодибилдинге, рекомендовал делать отдых на мышечную группу до 14 дней, если на тренировке применялся отказной тренинг.

 

Продолжение пособия.

youiron.ru

Типы мышечных волокон

Если мы хотим заботиться о своем здоровье, хотим его сохранить на долгие годы, то нам необходимо заниматься физическими упражнениями. Но заниматься нужно правильно, добиваясь положительного эффекта. А сделать это, ничего не зная о том, что такое мышечные волокна и какие бывают типы этих самых волокон невозможно.
Чтобы ликвидировать безграмотность в области физической культуры, предлагаю ознакомиться с очень важной и крайне нужно информацией. Постараюсь всё передать максимально понятно и доходчиво. И хотя, наверняка, покажется сложным пробираться через большое количество новых терминов, это необходимо для плодотворной жизни и здоровья.

Что такое мышечное волокно

Представьте себе любую мышцу. Если не можете представить, просто посмотрите на какую-то часть тела.
Мы почти полностью покрыты мышцами. Некоторые из них мощные и большие, как мышцы ног и ягодиц. Другие – более мелкие, например, мышцы рук. Но каждая мышца состоит из определенного количество мышечных волокон.
Образно это можно представить следующим образом. Возьмите пачку спагетти, это и будет мышца. А каждая спагеттинка в пачке – это мышечное волокно. Вот так просто.
При этом, чем больше мышца от природы, тем больше в ней мышечных волокон.

Типы мышечных волокон

Мышечные волокна делятся по 3-м признакам: скорости сокращения, цвету и способу получению энергии.
По скорости сокращения мышечные волокна делятся на:
1. Быстрые мышечные волокна;
2. Медленные мышечные волокна.
Быстрота мышечного сокращения зависит от вырабатываемого в волокне фермента АТФаза, который воздействует на молекулу АТФ либо сравнительно быстро, либо сравнительно медленно. Это наследуемый признак, и особого значения для жизни не имеет. Но в спорте это один из основных элементов на этапе отбора.
По цвету мышечные волокна делятся на:
1. Красные;
2. Белые;
3. Розовые.
Цвет мышечному волокну придает миоглобин – белок, ответственный за доставку кислорода внутрь волокна.
Там, где миоглобина много, мышечное волокно окрашивается в красный цвет.
Там, где миоглобина меньше, но он есть, цвет становится розовым.
Там, где миоглобина вообще почти нет, мышечное волокно остается белым.
Цвет мышечных волокон более важен для жизни, чем скорость сокращения.
Но наиболее важным остается деление мышечных волокон по признаку получения энергии. С этой стороны мышечные волокна делятся на:
1. Окислительные;
2. Гликолитические;
3. Промежуточные.
В окислительных мышечных волокнах энергию для сокращения (произведения работы) получают с помощью окисления жиров (липолиз) или окисления глюкозы (аэробный гликолиз). Окисление подразумевает взаимодействие с кислородом, который доставляется внутрь при помощи уже упомянутого миоглобина. В идеале, окислительное мышечное волокно всегда красного цвета.
Получение энергии при взаимодействии с кислородом возможно благодаря обильному распространению в окислительных мышечных волокнах т.н. митохондрий – «энергетических станций» мышечных клеток. В них происходит образование энергии.
В гликолитических мышечных волокнах митохондрии почти отсутствуют. Поэтому энергию для сокращения такие волокна получают при помощи расщепления глюкозы путем анаэробного гликолиза – без кислорода. Такие мышечные волокна всегда белого цвета по причине почти полного отсутствия миоглобина.
Промежуточные мышечные волокна имеют некоторое количество митохондрий. Их больше, чем в гликолитических, но меньше, чем в окислительных волокнах. Поэтому таким мышечным волокнам дано название промежуточных. По цвету они розовые, т.е. миоглобин есть, не его немного.

Почему важны мышечные волокна

Когда мышца сокращается, то всегда делает это при помощи сокращения каждого мышечного волокна. Только при небольшой нагрузке начинают сокращаться сначала окислительные мышечные волокна. Потом подключаются промежуточные. А когда работа требует уже достаточных усилий, в работу включаются и гликолитические. Это т.н. правило Ханнемана – правило рекрутирования мышечных волокон. Рекрутирование всегда идет по нарастающей, от окислительных к гликолитическим.
А теперь самое важное, что нужно знать:
Окислительные мышечные волокна способны производить работу небольшой интенсивности (приложения силы), но почти не уставая. Огромное количество митохондрий для такой работы используют сначала запасенные капельки жира, а после них – запасенный гликоген.
При повышении нагрузки, включаются промежуточные мышечные волокна. Интенсивность растет, но мышцы способны поддерживать и такой режим работы в течение некоторого времени, пока не закончится гликоген (как бензин в автомобиле). Все побочные продукты такой работы удаляются в митохондриях как самих промежуточных мышечных волокон, так и в окислительных, куда попадают с потоком крови.
Как только нагрузка возрастает настолько, что требуется включение гликолитических мышечных волокон, то работающая мышца становится обреченной на скорое прекращение работы. Побочных продуктов такого сильного сокращения в мышечных волокнах становится так много, что митохондрии не справляются. И в течение нескольких минут работа, скорее всего, прекратится. А если не прекратится, то нанесет колоссальный вред здоровью, прежде всего, клеткам сердца.
На практике это выглядит так. Мы можем часами ходить, т.к. при ходьбе работают окислительные мышечные волокна.
Мы можем довольно долго бегать трусцой или идти быстро. Повышение нагрузки требует совместной работы и окислительных, и промежуточных мышечных волокон, но митохондрии справляются с утилизацией побочных веществ.
Но как только мы переходим на быстрый бег (спринт), то через короткое время будем вынуждены либо резко снизить скорость, либо вообще перейти на шаг или остановиться. В работу включились все три типа мышечных волокон, и гликолитические производят такое количество побочных веществ, что митохондрии перестают справляться. Мышца становится неспособной поддерживать заданную интенсивность работы.
Более подробно об этом написано в статье Почему человек может много ходить, но не способен долго быстро бежать. Всех, кто еще не ознакомился с данной статье, отсылаю к ней. Прочтите обязательно.
Из вышесказанного следует вывод. Самыми важными для человека являются именно окислительные мышечные волокна, как способные производить работу (сокращения) в течение долгого времени без утомления.
Именно развитию окислительных мышечных волокон или превращению промежуточных и гликолитических в окислительные должны быть посвящены оздоровительные физические тренировки. Потому что в жизни крайне важно быть способным долго производить полезную работу любой направленности.
Ну, а о том, как это делать, поговорим в другой раз.
Тема сложная, поэтому должно возникать много вопросов. Задавайте, будем разбираться.

Понравилось? Поделитесь!

blogozdorovie.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*
*