Из чего состоит вакуум – Физический вакуум — это… Что такое Физический вакуум?
Физический вакуум — это… Что такое Физический вакуум?
Ва́куум (от лат. vacuum — пустота) — среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т.д. В зависимости от величины соотношения λ/d различают низкий (λ/d<<1), средний (λ/d~1) и высокий (λ/d>>1) вакуум.
Следует различать понятия физического вакуума и технического вакуума.
Технический вакуум
На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно. Мерой степени разрежения вакуума служит длина свободного пробега молекул газа < λ > , связанной с их
Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.
Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.
Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.
Физический вакуум
Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.
Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира [1] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых ложных вакуумов) является одним из главных основ инфляционной теории Большого взрыва.
Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему. А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.
См. также
Применения:
Примечания
- ↑ Физическая энциклопедия, т.5. Стробоскопические приборы — Яркость/ Гл. ред. А. М. Прохоров. Ред.кол.:А. М. Балдин,А. М. Бонч-Бруевич и др. — М.:Большая Российская Энциклопедия,1994, 1998.-760 с.:ил. ISBN 5-85270-101-7 , стр.644
Ссылки
Wikimedia Foundation. 2010.
dic.academic.ru
Вакуум — это… Что такое Вакуум?
Ртутный вакуумный барометр Эванджелисты Торричелли — учёного, впервые создавшего вакуум в лаборатории. Над поверхностью ртути в верхней части запаянной трубки — «торричелиева пустота» (вакуум, содержащий пары ртути под давлением насыщения при данной температуре).Ва́куум (от лат. vacuum
— пустота) — пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащую газ при давлениях, значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером среды d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (), средний () и высокий () вакуум.Следует различать понятия физического вакуума и технического вакуума.
Технический вакуум
На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.
Мерой степени разрежения вакуума служит длина свободного пробега молекул газа , связанной с их взаимными столкновениями в газе, и характерного линейного размера сосуда, в котором находится газ.
Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 торр) говорят о достижении низкого вакуума () (1016 молекул на 1 см³). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ молекул газа. При молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме (10−5 торр) (1011 молекул на 1 см³). Сверхвысокий вакуум соответствует давлению 10−9 торр и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием сканирующего туннельного микроскопа. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10−16 торр и ниже (1 молекула на 1 см³).
Высокий вакуум в микроскопических порах некоторых кристаллов достигается уже при атмосферном давлении, поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.
Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере и т. д. Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов — это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например титан) и криосорбционные насосы (в основном для создания форвакуума).
Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.
Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах (сосудах Дьюара), состоящих из ёмкости с двойными стенками, пространство между которыми вакуумированно.
Вакуум широко применяется в электровакуумных приборах — радиолампах (например, магнетронах микроволновых печей), электронно-лучевых трубках и т. п.
Физический вакуум
Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.
Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира[1] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.
См. также
Применения:
Примечания
- ↑ Физическая энциклопедия, т.5. Стробоскопические приборы — Яркость/ Гл. ред. А. М. Прохоров. Ред.кол.:А. М. Балдин,А. М. Бонч-Бруевич и др. — М.:Большая Российская Энциклопедия,1994, 1998.-760 с.:ил. ISBN 5-85270-101-7 , стр.644
Литература
dic.academic.ru
ЧТО ЕСТЬ ФИЗИЧЕСКИЙ ВАКУУМ?
В вакууме, заключенном в объеме обыкновенной
электрической лампочки, энергии такое большое
количество, что ее хватило бы, чтобы вскипятить
все океаны на Земле.
Р.Фейнман, Дж. Уилер.
Главный смысл новейших мировых открытий таков: во вселенной доминирует физический вакуум, по плотности энергии он превосходит все обычные формы материи вместе взятые. Хоть вакуум чаще всего называют космическим, он присутствует всюду, пронизывая насквозь все пространство и материю. Физический вакуум является самым энергоемким, в прямом смысле слова неисчерпаемым источником жизненно важной, экологически чистой энергии. Физический вакуум — это единое энергоинформационное поле Вселенной.
В настоящее время в физике формируется принципиально новое направление научных исследований, связанное с изучением свойств и возможностей физического вакуума. Это научное направление становится доминирующим, и в прикладных аспектах способно привести к прорывным технологиям в области энергетики, электроники, экологии.
Чтобы понять роль и место вакуума в сложившейся картине мира, попытаемся оценить, как соотносятся в нашем мире материя вакуума и вещество.
В этом отношении интересны рассуждения Я.Б.Зельдовича: «Вселенная огромна. Расстояние от Земли до Солнца составляет 150 миллионов километров. Расстояние от солнечной системы до центра Галактики в 2 млрд. раз больше расстояния от Земли до Солнца. В свою очередь, размеры наблюдаемой Вселенной в миллион раз больше расстояния от Солнца до нашей Галактики. И все это огромное пространство заполнено невообразимо большим количеством вещества.
Масса Земли составляет более чем 5,97 Х 10 в 27-й степени грамм. Это такая большая величина, что ее трудно даже осознать.
Масса Солнца в 333 тысячи раз больше. Только в наблюдаемой области Вселенной суммарная масса порядка 10 в 22-й степени масс Солнца. Вся безбрежная огромность пространства и баснословное количество вещества в нем поражает воображение».
С другой стороны, атом, входящий в состав твердого тела, во много раз меньше любого известного нам предмета, но во много раз больше ядра, находящегося в центре атома. В ядре сконцентрировано почти все вещество атома. Если увеличить атом так, чтобы ядро стало иметь размеры макового зернышка, то размеры атома возрастут до нескольких десятков метров. На расстоянии десятков метров от ядра будут находиться многократно увеличенные электроны, которые все равно трудно разглядеть глазом вследствие их малости. А между электронами и ядром останется огромное пространство, не заполненное веществом. Но это не пустое пространство, а особый вид материи, которую физики назвали физическим вакуумом.
Само понятие «физический вакуум» появилось в науке как следствие осознания того, что вакуум не есть пустота, не есть «ничто». Он представляет собой чрезвычайно существенное «нечто», которое порождает все в мире и задает свойства веществу, из которого построен окружающий мир.
Оказывается, что даже внутри твердого и массивного предмета вакуум занимает неизмеримо большее пространство, чем вещество. Таким образом, мы приходим к выводу, что вещество является редчайшим исключением в огромном пространстве, заполненном субстанцией вакуума. В газовой среде такая асимметрия еще больше выражена, не говоря уже о космосе, где наличие вещества является больше исключением, чем правилом. Видно, сколь ошеломляюще огромно количество материи вакуума во Вселенной в сравнении даже с баснословно большим количеством вещества в ней. В настоящее время ученым уже известно, что вещество своим происхождением обязано материальной субстанции вакуума, и все свойства вещества задаются свойствами физического вакуума.
Наука все глубже проникает в сущность вакуума. Выявлена основополагающая роль вакуума в формировании законов вещественного мира. Уже не является удивительным утверждение некоторых ученых, что «все из вакуума и все вокруг нас — вакуум».
Физика, сделав прорыв в описании сущности вакуума, заложила условия для практического его использования при решении многих проблем, в том числе, проблем энергетики и экологии.
По расчетам Нобелевского лауреата Р.Фейнмана и Дж. Уиллера, энергетический потенциал вакуума настолько огромен, что «в вакууме, заключенном в объеме обыкновенной электрической лампочки, энергии такое количество, что ее хватило бы, чтобы вскипятить все океаны на Земле..
Однако, до сих пор традиционная схема получения энергии из вещества остается не только доминирующей, но даже считается единственно возможной. Под окружающей средой по-прежнему упорно продолжают понимать вещество, которого так мало, забывая о вакууме, которого так много. Именно такой старый «вещественный» подход и привел к тому, что человечество, буквально купаясь в энергии, испытывает энергетический голод.
В новом, «вакуумном» подходе исходят из того, что окружающее пространство — физический вакуум — является неотъемлемой частью системы энергопреобразования. При этом возможность получения вакуумной энергии находит естественное объяснение без отступления от физических законов. Открывается путь создания энергетических установок, имеющих избыточный энергобаланс, в которых полученная энергия превышает энергию, затраченную первичным источником питания. Энергетические установки с избыточным энергобалансом смогут открыть доступ к огромной энергии вакуума, запасенной самой Природой.
В завершение к сказанному следует добавить, что астрономами подсчитано и теоретически доказано существование энергии в вакууме Вселенной. По их расчетам, только 2-3% этой энергии израсходовано на создание видимого мира (галактик, звезд и планет), а остальная энергия находится в Физическом вакууме. В одной из книг Дж. Уиллер привел оценку нижней границы этой бесконечной энергии, которая оказалась равной 1095 г/см3. Поэтому нет ничего удивительного, что вакуум является источником в конечном итоге всех существующих видов энергии, и правильнее всего получать энергию непосредственно из вакуума.
Высшая физика вакуума
В последние годы газеты, радио, журналы и телевидение почти ежедневно сообщают нам сведения о явлениях, которые получили название аномальных. Мы узнаем о различных повторяющихся событиях, связанных с психикой человека (ясновидение, телекинез, телепатия, телепортация, левитации, экстрасенсорика и т.д.) Все эти сведения, вызывающие у естествоиспытателя защитную реакцию в виде «подозрительного скепсиса», скорее всего говорят об ограниченности существующих научных знаний.
Более широкий взгляд на проблему предложен в разработанной авторами программе всеобщей относительности и теории физического вакуума, основной целью которой является объединение на научной основе представлений культур Востока и Запада об окружающей нас реальности. Как оказалось, физическим посредником в явлениях психофизики выступают первичные торсионные поля, обладающие рядом необычных свойств, а именно:
а) Поля не переносят энергии, но переносят информацию;
б) Интенсивность торсионного сигнала одинакова на любом расстоянии от источника;
в) Скорость торсионного сигнала превышает скорость света;
г) Торсионный сигнал обладает высокой проникающей способностью.
Все эти свойства, полученные из теоретического анализа уравнений вакуума, совпадают со свойствами физического посредника, установленными в большом количестве экспериментальных работ.
Религиозные книги и древние философские трактаты утверждают, что кроме физического тела у человека существуют астральные и ментальные и т.д. тела, образованные «тонкими материями», и способные сохранять информацию о человеке даже после смерти его физического тела. Теория вакуума подтверждает эти представления, поскольку в этой теории (кроме уже известных нам четырех уровней реальности — твердое тело, жидкость, газ и элементарные частицы) существуют объекты, описывающие физические свойства тонких миров, связанных с сознанием человека. Для медицинского работника это означает, что лечение только физического тела человека не приводит к успеху при заболеваниях, вызванных нарушением полей в его тонких телах.
СЕМЬ УРОВНЕЙ РЕАЛЬНОСТИ
Одним из существенных результатов теории вакуума является систематика психофизических феноменов в соответствии со следующими семью уровнями физической реальности: твердое тело (земля), жидкость (вода), газ (воздух), плазма (огонь), физический вакуум (эфир), первичные торсионные поля (поле сознания), Абсолютное <Ничто> (Божественная монада). Действительно, существующая научная и техническая литература отражает, в основном, достигнутый на сегодняшний день уровень знания первых четырех уровней реальности, которые рассматриваются как четыре фазовых состояния вещества. Все известные нам физические теории, начиная с механики Ньютона и кончая современными теориями фундаментальных Физических взаимодействий, занимаются теоретическим и экспериментальным изучением поведения твердых тел, жидкостей, газов, различных полей и элементарных частиц. За последние двадцать лет нарастающим темпом появляются факты, которые указывают на то, что существуют ещё два уровня, это уровень первичного поля кручения (или «Поля Сознания», а так же информационного поля) и уровень Абсолютного «Ничто». Эти уровни признаются многими исследователями как уровни реальности, на которых базируются давно утерянные человечеством технологии.
Основным методом познания реальности в таких технологиях является медитация, в отличие от рефлексии, используемой как метод познания окружающего мира в объективной физике. Два верхних уровня, включая частично и вакуумный уровень, образуют . Эти уровни признаются многими исследователями как уровни реальности, на которых базируются давно утерянные человечеством технологии. Основным методом познания реальности в таких технологиях является медитация, в отличие от рефлексии, используемой как метод познания окружающего мира в объективной физике. Два верхних уровня, включая частично и вакуумный уровень, образуют «субъективную физику», поскольку основным фактором в явлениях различного рода на нижних уровнях является сознание (полеты йогов, телекинез, ясновидение, парапсихология, опыты Ури Геллера и т.д.). Основной энергией, действующей на верхних уровнях, является психическая энергия, которая играет важнейшую роль в вопросах медицины. В настоящее время ученые более чем в 120 странах мира занимаются интенсивным изучением второго уровня. Для этого созданы научные центры, оснащенные современным оборудованием, и разработаны научные программы позволяющие получать реальные достаточно внушительные достижения во многих областях человеческой жизни; в здоровье, учебе, экологии, науке и т.д. Эти достижения убедительно показывают, что противопоставление материального и идеального, материи и сознания, науки и религии, уходящей корнями во второй уровень, значительно ограничивает наши представления о реальности. Скорее всего, все эти противоположности составляют диалектическое единство на всех уровнях реальности и одновременно проявляются в различной степени в той или иной ситуации. Понятно, что без учета верхних трех уровней картина мира окажется неполной. Более того, происходит слияние современных методов изучения физических законов с получением «чистого знания», путем взаимодействия человеческого сознания с «Полем Сознания»,* которое, согласно научной программе , представляет собой единый источник как для законов естествознания, так и для общественных законов. Поэтому под психофизикой (субфизикой) понимаются явления, основной причиной которых оказывается сознание человека, а основной технологией — медитация.
МЕДИТАЦИЯ
На Востоке несколько тысячелетий назад возник совершенно необычный (с позиций западной науки) способ познания реальности — медитация. В результате специальной методики человек, занимающийся медитацией, может целенаправленно расширять область взаимодействия своего Сознания с Информационным Полем (Полем Сознания), носителем которого является первичное торсионное поле, и таким образом получать знания об окружающем нас мире. В 1972 г. индийский философ и физик Махариши Махеш Йоги основал в США международный университет по практическому применению медитации в различных областях жизни современного общества: астральное и ментальное тела сформированы из вторичных торсионных полей, т.е. порождены атомарно — молекулярной структурой физического тела. Остальные тонкие тела — казуальное, душа и дух образованы первичными торсионными полями и взаимодействуют непосредственно с полем сознания. Совокупность тонких тел образует сознание человека.
ТЕОРИЯ ВАКУУМА И ДРЕВНИЕ УЧЕНИЯ
Многие древние трактаты восточной философии утверждают, что источником всего сущего является пустое пространство или вакуум в современном понимании. Развитие науки привело физиков именно к такому же представлению об источнике материи любого вида и положило начало изучению пятого (после твердого тела, жидкости, газа и плазмы) вакуумного состояния реальности на базе современного мновый уровень реальности — физический вакуум, при этом разные по своей природе теории давали разные представления о нем. Если в теории Эйнштейна вакуум рассматривается как пустое четырехмерное пространство-время, наделенной геометрией Римана, то в электродинамике Максвелла — Дирака вакуум (глобально нейтральный) представляет собой своего рода «кипящий бульон», состоящий из виртуальных частиц — электронов и античастиц — позитронов. Дальнейшее развитие квантовой теории поля показало, что основное состояние всех квантовых полей — физический вакуум — образуют не только виртуальные электроны и позитроны, но и все другие известные частицы и античастицы, находящиеся в виртуальном состоянии. Для того, чтобы объединить эти два различных представления о вакууме, Эйнштейном была выдвинута программа, получившая название программы единой теории поля. В теоретической физике, посвященной этому вопросу, были сформулированы две глобальные идеи, предполагающие создать единую картину мира: это программа Римана, Клиффорда и Эйнштейна, согласно которой «…в физическом мире не происходит ничего кроме изменения кривизны пространства, подчиняющегося (возможно) закону непрерывности «, и программа Гайзенберга, предполагающая построить все частицы материи из частиц спина 1/2. Трудности в объединении этих двух программ, по мнению ученика Эйнштейна известного теоретика Джона Уилера, состоит в том, что: «…мысль о получении понятия спина из одной лишь классической геометрии представляется столь же невозможной, как и потерявшая смысл надежда некоторых исследователей прежних лет вывести квантовую механику из теории относительности». Уилер высказал эти слова в 1960 году, читая лекции в Международной школе физики им. Энрико Ферми, и пока еще не знал, что уже в это время были начаты блестящие работы Пенроуза, которые показывают, что именно спиноры могут быть положены в основу классической геометрии и что именно они определяют топологические и геометрические свойства пространства-времени такие, например, как его размерность и сигнатура. Поэтому новая картина мира, по мнению автора, может быть найдена лишь на пути объединения программы Римана Клиффорда-Эйнштейна-Гайзенберга-Пенроуза с многочисленной феноменологией, не укладывающиеся в современные научные представления. Сейчас становится ясным, что программа Единой Теории Поля переросла в Теорию Физического Вакуума, которая призвана объяснить не только явления объективной физики, но и психофизические явления. На сегодняшний день существует богатый фактический материал, относящийся к психофизическим явлениям, однако прочной теоретической основы в имеющихся работах, включая работы Хагелина, нет до сих пор. Любые попытки дать объяснение существующим фактам в отрыве от современной науки не могут считаться успешными, поскольку реальность представляет собой единое целое, а психофизика, с одной стороны, и современная физика с другой, представляют собой различные грани единого целого. В настоящей работе было показано, что некоторые весьма общие свойства психофизических явлений (например, сверхсветовая передача информации), следуют из теории физического вакуума. Эта теория является результатом естественного развития физической науки и поэтому неудивительно, что именно явления психофизики представляют собой весомый аргумент для обобщения современных физических теорий. Эксперименты показывают, что основным инструментом психофизики является человеческое сознание, способное «подключаться» к первичному полю кручения (или Единому Полю Сознания) и через него воздействовать на «грубые» уровни реальности — плазму, газ, жидкость и твердое тело. Вполне вероятно, что в вакууме существуют критические точки (точки бифуркации), в которых все уровни реальности проявляются одновременно виртуальным образом. Достаточно незначительных воздействий на эти критические точки «полем сознания» для того, чтобы развитие событий привело к рождению из вакуума либо твердого тела, либо жидкости или газа и т.д. Существование явления телепортации предметов указывает на возможность «ухода в вакуум» и «рождения из вакуума» не только элементарных частиц и античастиц, но и более сложных физических объектов, представляющих собой огромное, упорядоченное скопление этих частиц. Важно отметить, что кроме гравитационного и электромагнитного полей, теория физического вакуума выделяет особую роль полю сознания, физическим носителем которого является поле инерции (торсионное поле). Это физическое поле порождает силы инерции, действующие на любые виды материи в силу их универсальности. Не исключено, что явление телекинеза (передвижение предметов различной природы психофизическим усилием) объясняется способностью человека возмущать физический вакуум вблизи предмета таким образом, что возникают поля и силы инерции, вызывающие движение предмета. Автор выражает надежду, что именно теория физического вакуума окажется той научной основой, которая позволит нам объяснить столь загадочные явления как явления психофизики.
КОСМИЧЕСКАЯ ЭВОЛЮЦИЯ ЧЕЛОВЕКА
Теория физического вакуума заставляет нас пересмотреть соотношение между материей и сознанием, отдавая приоритет сознанию как творческому началу всякого реального процесса. Творение миров и вещества, из которых они состоят, начинается Абсолютным «Ничто» из потенциального состояния материи — физического вакуума без какой-либо первоначально проявленной материи. Число возможных миров в этой ситуации безгранично, поэтому сверхсознание — Абсолютное «Ничто» нуждается в процессе творения в добровольных помощниках, которых он сам и создает на уровне проявленной материи «по своему образу и подобию». Цель этих помощников состоит в постоянном самосовершенствовании и эволюции.
Эволюционная лестница построена в соответствии с семиуровневой схемой реальности, возникающей в теории физического вакуума, поэтому эволюция помощника означает продвижение вверх по лестнице от материального проявленного к тонким вакуумным и сверхвакуумным уровням реальности. Эта цель объединяет всех помощников, хотя они и находятся на разных уровнях эволюционной лестницы. Чем на более высоком уровне находится помощник, тем ближе он к Абсолютному «Ничто» по своим информационным и творческим возможностям. У продвинутых помощников эти творческие возможности столь колоссальны, что они способны создавать в проявленном состоянии звездные системы и разумных существ, подобных нам. Человек нашей планеты был создан, возможно, помощниками – творцами (или творцом) высокого уровня и наше предназначение, как и всего в мире, помогать Абсолютному «Ничто» в его творческой работе. Тот, кто преуспевает в этом, тот и восходит в процессе этой работы вверх по эволюционной лестнице, становясь свободным и получая все больше и больше возможностей для творческой деятельности.
«Всё во Вселенной — энергоинформационное взаимодействие»
До настоящего времени в мире существуют две концепции во взглядах на устройство всего живого и, в частности, организма человека, на болезни и способы их лечения. Одна из них, развивающаяся с недавних пор, — биохимико-физиологическая (европейская) и другая, дошедшая до нас из глубины веков через Индию и Китай, — энергетическая. В рамках первого направления организм человека рассматривается на телесном уровне, без каких-либо понятий, связанных с тонкими энергиями. Это направление характеризуется с одной стороны, научно-техническими достижениями, а с другой — неспособностью реально справиться с постоянным численным ростом серьезных заболеваний (инфаркт миокарда, инсульт, онкологические, вирусные заболевания, СПИД и т.д.), с проблемой старения. Тем не менее, многие ученые стремятся изучить себя и окружающий мир в единстве этих двух концепций, дополняя, а не исключая их, в проблеме здоровья и долголетия. Среди таких ученых — известные всему миру физики, химики, биологи, врачи: Луи Пастер, Пьер Кюри, Владимир Вернадский, Александр Гурвич. Проблема здоровья в излагаемом материале рассматривается с позиций обеих концепций.
Ни для кого не секрет, что пространство Вселенной (физический вакуум) наполнено множеством достаточно изученных физических полей (электрические, магнитные, гравитационные и др.), и все эти поля создаются в результате различных излучений от множества космических тел Вселенной. В процессе жизни человек подвергается воздействию множества факторов окружающей среды, которые и определяют его жизнь. Организм человека взаимодействует с большим количеством живых и неживых объектов — соответственно и с Землей — посредством не только известных органов чувств, но и через различные поля, в том числе электрическое, магнитное и гравитационное. В конце ХХ века в результате теоретических и практических исследований науке стало известно об энергии и полях, имеющих неэлектромагнитное происхождение, часто называемых торсионными, тонкими. Многолетние исследования, проведенные автором в области тонких полей, позволяют говорить о том, что при решении задач обеспечения качества жизни центральным оказывается вопрос энергообеспечения человека и взаимодействия его посредством своей энергетической системы (биологического поля) с энергиями окружающей среды тонкого плана.
На современном этапе наших исследований полученные знания позволили выйти на беспрецедентный уровень обеспечения качества и продолжительности жизни человека. Изучив природу энергии и полей такого типа, разработчикам данной технологии удалось впервые в мировой практике найти способ их получения и применения с пользой для людей.
Каждый человек хотя бы раз в жизни слышал о различных чудесных исцелениях «живой водой». Отметим, что степень полезного действия на организм человека в вышеуказанной воде определяется объемом энергии и нужной информацией, сконцентрированной в ней. Изучив природу подобных чудес, становится понятной причина такого рода исцелений и «панацейности» такой воды.
Известно, что вода обладает магнетическими свойствами притягивать, накапливать и быть носителем энергии и информации окружающего пространства. Например, изменяя пространство определенными геометрическими формами (постройками), можно увеличивать энергоинформационные свойства воды при помещении ее внутрь формы, и чем длительнее ее пребывание там, тем целебнее свойства она приобретает. Также имеет значение месторасположение таких объектов или водоемов, где биолокационным способом определяется энергоинформационный потенциал данного пространства. На похожем принципе основана святая вода (эффект купола), вода из пирамид, структурированная вода, пограничная вода, крещенская вода, талая вода, вода с отрицательными значениями протонов в толщах озера Байкал.
Известно, что для существования и регенерации клетки организма снабжаются не только энергией, высвобожденной в результате метаболизма, но и всепроникающей энергией физического вакуума, следовательно, взаимодействие клеток между собой обеспечивается через их общее поле. Состояние здоровья человека на 99% определяется достаточным по количеству и качеству обеспечением клеток, тканей и в целом организма адекватной энергией и информационными ресурсами. Новейшими исследованиями установлено, что практически все здоровые (дифференцированные) клетки нынешнего среднестатистического человека испытывают колоссальный дефицит в адекватной энергетике и информации, что обуславливает высокий иммунодефицит и крайне неудовлетворительный обмен. Неудивительно, что подавляющее большинство населения планеты, включая детей, ныне глубоко поражены различными и, к сожалению, уже не излечимыми заболеваниями.
kosmoenergetikainfo.ru
Вакуум — Википедия
Насос для демонстрации вакуумаВа́куум (от лат. vacuus — пустой) — пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, состоящую из газа при давлении значительно ниже атмосферного[1]. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером среды d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (λ/d≪1{\displaystyle \lambda /d\ll 1}), средний (λ/d∼1{\displaystyle \lambda /d\sim 1}) и высокий (λ/d≫1{\displaystyle \lambda /d\gg 1}) вакуум.
Технический вакуум
На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в частности толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.
Мерой степени разрежения вакуума служит длина свободного пробега молекул газа λ{\displaystyle \lambda }, связанной с их взаимными столкновениями в газе, и характерного линейного размера d{\displaystyle d} сосуда, в котором находится газ.
Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 мм рт.ст.), говорят о достижении низкого вакуума (λ≪d{\displaystyle \lambda \ll d}; 1016 молекул на 1 см³). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ{\displaystyle \lambda } молекул газа. При λ/d≫1{\displaystyle \lambda /d\gg 1} молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме (10−5 мм рт.ст.; 1011 молекул на 1 см³). Сверхвысокий вакуум соответствует давлению 10−9 мм рт.ст. и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием сканирующего туннельного микроскопа. Для сравнения, давление в космосе на несколько порядков ниже — 109 молекул на 1 см³ (миллиард молекул в кубическом сантиметре), в дальнем же космосе и вовсе может достигать 10−16 мм рт.ст. и ниже (1 молекула на 1 см³)[2].
Высокий вакуум в микроскопических порах некоторых кристаллов и в ультратонких капиллярах достигается уже при атмосферном давлении, поскольку диаметр поры/капилляра становится меньше, чем длина свободного пробега молекулы, равная в воздухе при нормальных условиях ~60 нанометрам[3].
Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере и т. д. Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов — это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например, титан) и криосорбционные насосы (в основном, для создания форвакуума).
Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.
Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах (сосудах Дьюара), состоящих из ёмкости с двойными стенками, пространство между которыми вакуумировано.
Вакуум широко применяется в электровакуумных приборах — радиолампах (например, магнетронах микроволновых печей), электронно-лучевых трубках и т. п.
Физический вакуум
Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии[4][5]. Такое состояние не является абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.
Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира[6] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.
Ложный вакуум
Ложный вакуум — состояние в квантовой теории поля, которое не является состоянием с глобально минимальной энергией, а соответствует её локальному минимуму. Такое состояние стабильно в течение определённого времени (метастабильно), но может «туннелировать» в состояние истинного вакуума.
Эйнштейновский вакуум
Эйнштейновский вакуум — иногда встречающееся название для решений уравнений Эйнштейна в общей теории относительности для пустого, без материи, пространства-времени. Синоним — пространство Эйнштейна.
Уравнения Эйнштейна связывают метрику пространства-времени (метрический тензор gμν) с тензором энергии-импульса. В общем виде они записываются как
- Gμν+Λgμν=8πGc4Tμν,{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu },}
где тензор Эйнштейна Gμν является определённой функцией метрического тензора и его частных производных, R — скалярная кривизна, Λ — космологическая постоянная, Tμν — тензор энергии-импульса материи, π — число пи, c — скорость света в вакууме, G — гравитационная постоянная Ньютона.
Вакуумные решения этих уравнений получаются при отсутствии материи, то есть при тождественном равенстве нулю тензора энергии-импульса в рассматриваемой области пространства-времени: Tμν = 0. Часто лямбда-член также принимается равным нулю, особенно при исследовании локальных (некосмологических) решений. Однако при рассмотрении вакуумных решений с ненулевым лямбда-членом (лямбда-вакуум) возникают такие важные космологические модели, как модель Де Ситтера (Λ > 0) и модель анти-Де Ситтера (Λ < 0).
Тривиальным вакуумным решением уравнений Эйнштейна является плоское пространство Минковского, то есть метрика, рассматриваемая в специальной теории относительности.
Другие вакуумные решения уравнений Эйнштейна включают в себя, в частности, следующие случаи:
Космическое пространство
Космическое пространство является не идеальным вакуумом, разреженная плазма заполнена заряженными частицами, электромагнитными полями, а иногда звёздамиКосмическое пространство имеет очень низкую плотность и давление и является наилучшим приближением физического вакуума. Но космический вакуум не является действительно совершенным, даже в межзвёздном пространстве есть несколько атомов водорода на кубический сантиметр.
Звёзды, планеты и спутники держат свои атмосферы силой притяжения, и как таковой у атмосферы нет чётко очерченной границы: плотность атмосферного газа просто уменьшается с расстоянием от объекта. Атмосферное давление Земли падает до примерно 3,2×10−2 Па на 100 км высоты — на так называемой линии Кармана, которая является общим определением границы с космическим пространством. За этой линией изотропное давление газа быстро становится незначительным по сравнению с давлением излучения от Солнца и динамическим давлением солнечного ветра, поэтому определение давления становится трудно интерпретировать. Термосфера в этом диапазоне имеет большие градиенты давления, температуры и состава, и сильно варьируется в связи с космической погодой.
Плотность атмосферы в течение первых нескольких сотен километров выше линии Кармана всё ещё достаточна для оказания значительного сопротивления движению искусственных спутников Земли. Большинство спутников работают в этой области, называемой низкой околоземной орбитой, и должны подрабатывать двигателями каждые несколько дней для поддержания стабильной орбиты.
Космическое пространство заполнено большим количеством фотонов, так называемым реликтовым излучением, а также большим количеством реликтовых нейтрино, пока не поддающихся обнаружению. Текущая температура этих излучений составляет около 3 К, или −270 °C или −454° по Фаренгейту.
История изучения вакуума
Идея вакуума (пустоты) была предметом споров ещё со времён древнегреческих и древнеримских философов. Атомисты — Левкипп (ок. 500 г. до н. э.), Демокрит (около 460—370 гг. до н. э.), Эпикур (341—270 гг. до н. э.), Лукреций (ок. 99—55 гг. до н. э.) и их последователи — предполагали, что всё существующее — атомы и пустота между ними, причём без вакуума не было бы и движения, атомы не могли бы двигаться, если бы между ними не было пустого пространства. Стратон (ок. 270 г. до н. э.) и многие философы в более поздние времена полагали, что пустота может быть «сплошной» (vacuum coacervatum) и «рассеянной» (в промежутках между частицами вещества, vacuum disseminatum).
Напротив, Аристотель (384—322 гг. до н. э.) и ряд других философов считали, что «природа не терпит пустоты». Концепция «боязни пустоты» (horror vacui), зародившаяся ещё до Аристотеля, у Эмпедокла (ок. 490—430 гг. до н. э.) и других философов ионийской школы, в философской мысли Средневековой Европы стала доминирующей и приобрела религиозно-мистические черты.
Некоторые предпосылки к эмпирическому исследованию вакуума существовали ещё в античности. Древнегреческие механики создавали различные технические устройства, основанные на разрежении воздуха. Например, водяные насосы, действующие путём создания разрежения под поршнем, были известны ещё во времена Аристотеля. До нашего времени сохранился рисунок пожарного насоса, изобретённого «отцом пневматики» Ктезибием (ок. 150 г. до н. э.). Водяные насосы такого типа были фактически прообразами вакуумного поршневого насоса, появившегося спустя почти два тысячелетия. Ученик Ктезибия, Герон Александрийский, разработал поршневой шприц для вытягивания гноя, тоже являющийся по существу вакуумным устройством.
Эмпирическое изучение вакуума началось лишь в XVII веке, с концом Возрождения и началом научной революции Нового времени. К этому моменту уже давно было известно, что всасывающие насосы могут поднимать воду на высоту не более 10 метров. Например, в трактате Георгия Агриколы (1494—1555) «О горном деле» приведено изображение цепочки водяных насосов для откачки воды из шахты.
Галилей в своих «Беседах и математических доказательствах двух новых наук»[7] (1638), книге, которая завершила разгром аристотелевской физики, указывал, ссылаясь на практику, что высота, до которой всасывающие насосы поднимают воду, всегда одна и та же — около 18 локтей. В этой книге он, в частности, описывает фактически вакуумный прибор с поршнем, необходимый для сравнения сопротивления на разрыв воды и твёрдого тела, хотя и объясняет сопротивление растяжению, характерное для твёрдых тел и жидкостей, боязнью пустоты, предполагая существование между частицами вещества мельчайших пустых пор, расширяющихся при растяжении.
Под влиянием трактата Галилея, где указывалось на ограниченность «боязни пустоты», в 1639—1643 гг. Гаспаро Берти на фасаде своего дома в Риме соорудил устройство (в более поздней терминологии, барометрическую водяную трубу), которое можно считать первой установкой для физического исследования вакуума. В верхней, стеклянной закрытой части трубы высотой более 10 м, над водяным столбом, уравновешенным атмосферным давлением, обнаруживалось пустое пространство (на самом деле оно было заполнено водяными парами под давлением, равным упругости паров воды при температуре окружающей среды, а также выделившимся из воды растворённым воздухом, то есть давление в полости составляло около 0,1 атмосферы). Эмануэль Маньяно закрепил в этой полости колокольчик и молоток. Воздействуя на молоток магнитом, он ударял молотком по колокольчику. В результате этого первого в истории эксперимента в вакууме (точнее, в разреженном газе) было обнаружено, что звук колокольчика был приглушённым[8].
Учёный Рафаэло Маджотти[9] (1597—1656) из Рима сообщил об опытах Берти и Маньяно ученику Галилея, флорентийцу Эванджелисте Торричелли. При этом Маджотти высказал мысль, что более плотная жидкость остановилась бы на более низком уровне[10]. В 1644 году Торричелли (с помощью Винченцо Вивиани, другого ученика Галилея) сумел создать первую вакуумную камеру. Его работы, связанные с теориями атмосферного давления, послужили основой дополнительных экспериментальных методик. Вакуум по методу Торричелли (торричеллиева пустота) достигается путём наполнения ртутью длинной стеклянной трубки, запаянной с одного конца, а затем переворачиванием её таким образом, чтобы открытый конец трубки оказался под поверхностью ртути в более широком открытом сосуде[11]. Ртуть будет вытекать из трубки, пока сила тяжести ртутного столба не будет скомпенсирована атмосферным давлением. В свободном от ртути пространстве в верхнем, запаянном конце трубки образуется вакуум. Этот метод лежит в основе работы ртутного барометра. При стандартном атмосферном давлении высота ртутного столба, уравновешенного атмосферным давлением, равна 760 мм.
Около 1650 года немецкий учёный Отто фон Герике изобрёл первый вакуумный насос (поршневой цилиндр с водяным уплотнением), позволивший легко откачивать воздух из герметичных ёмкостей и экспериментировать с вакуумом[12]. Насос, названный автором antlia pneumatica, был ещё очень далек от совершенства и требовал не менее трёх человек для манипуляций с поршнем и кранами, погруженными в воду, для лучшей изоляции образующейся пустоты от наружного воздуха. Однако с его помощью Герике сумел продемонстрировать многие свойства вакуума, в частности, поставив знаменитый опыт с Магдебургскими полушариями. Герике создал также водяной барометр, по принципу действия аналогичный ртутному барометру Торричелли, хотя из-за меньшей плотности воды по сравнению с ртутью высота водяного столба, уравновешивающего атмосферное давление, в 13,6 раз больше — около 10 метров. Герике впервые выяснил, что вакуум не проводит звук и что горение в нём прекращается[13].
Вакуумный насос Герике был значительно усовершенствован Робертом Бойлем, что позволило ему выполнить ряд экспериментов для выяснения свойств вакуума и его влияния на различные объекты. Бойль обнаружил, что в вакууме гибнут мелкие животные, огонь потухает, а дым опускается вниз (и, следовательно, так же подвержен влиянию силы тяжести, как и другие тела). Бойль выяснил также, что поднятие жидкости в капиллярах происходит и в вакууме, и тем самым опроверг господствовавшее тогда мнение, что в этом явлении участвует давление воздуха. Напротив, перетекание жидкости через сифон в вакууме прекращалось, чем было доказано, что это явление обусловлено атмосферным давлением. Он показал, что при химических реакциях (таких, как гашение извести), а также при взаимном трении тел тепло выделяется и в вакууме.
Влияние на людей и животных
Люди и животные, подвергшиеся воздействию вакуума, теряют сознание через несколько секунд и умирают от гипоксии в течение нескольких минут, но эти симптомы, как правило, не похожи на те, которые показывают в популярной культуре и СМИ. Снижение давления понижает температуру кипения, при которой кровь и другие биологические жидкости должны закипеть, но упругое давление кровеносных сосудов не позволяет крови достичь температуры кипения 37 °С[14]. Хотя кровь не вскипает, эффект образования газовых пузырьков в ней и других жидкостях тела при низких давлениях, известный как эбуллизм (воздушная эмфизема), является серьёзной проблемой. Газ может раздувать тело в два раза больше его нормального размера, но ткани достаточно эластичны, чтобы предотвратить их разрыв[15]. Отёки и эбуллизм можно предотвратить специальным лётным костюмом. Астронавты шаттлов носили специальную эластичную одежду под названием Crew Altitude Protection Suit (CAPS), которая предотвращает эбуллизм при давлении более 2 кПа (15 мм рт.ст.)[16]. Быстрое испарение воды охлаждает кожу и слизистые оболочки до 0 °С, особенно во рту, но это не представляет большой опасности.
Эксперименты на животных показывают, что после 90 секунд нахождения организма в вакууме обычно происходит быстрое и полное восстановление организма, однако более долгое пребывание в вакууме фатально и реанимация бесполезна[17]. Имеется лишь ограниченный объем данных о влиянии вакуума на человека (как правило, это происходило при попадании людей в аварию), но они согласуются с данными, полученными в экспериментах на животных. Конечности могут находиться в вакууме гораздо дольше, если дыхание не нарушено[18]. Первым показал, что вакуум смертелен для мелких животных, Роберт Бойль в 1660 году.
Измерение
Степень вакуума определяется количеством вещества, оставшимся в системе. Вакуум, в первую очередь, определяется абсолютным давлением, а полная характеристика требует дополнительных параметров, таких как температура и химический состав. Одним из наиболее важных параметров является средняя длина свободного пробега (MFP) остаточных газов, которая указывает среднее расстояние, которое частица пролетает за время свободного пробега от одного столкновения до следующего. Если плотность газа уменьшается, MFP увеличивается. MFP в воздухе при атмосферном давлении очень короткий, около 70 нм, а при 100 мПа (~1×10−3 торр) MFP воздуха составляет примерно 100 мм. Свойства разреженного газа сильно изменяются, когда длина свободного пробега становится сравнима с размерами сосуда, в котором находится газ.
Вакуум подразделяется на диапазоны в соответствии с технологией, необходимой для его достижения или измерения. Эти диапазоны не имеют общепризнанных определений, но типичное распределение выглядит следующим образом[19][20]:
Давление (мм рт.ст.) | Давление (Па) | |
---|---|---|
Атмосферное давление | 760 | 1,013×10+5 |
Низкий вакуум | от 760 до 25 | от 1×10+5 до 3,3×10+3 |
Средний вакуум | от 25 до 1×10−3 | от 3,3×10+3 до 1,3×10−1 |
Высокий вакуум | от 1×10−3 до 1×10−9 | от 1,3×10−1 до 1,3×10−7 |
Сверхвысокий вакуум | от 1×10−9 до 1×10−12 | от 1,3×10−7 до 1,3×10−10 |
Экстремальный вакуум | <1×10−12 | <1,3×10−10 |
Космическое пространство | от 1×10−6 до <3×10−17 | от 1,3×10−4 до <1,3×10−15 |
Абсолютный вакуум | 0 | 0 |
Применение
Вакуум полезен для многих процессов и применяется в разных устройствах. Впервые для массово используемых товаров он был применён в лампах накаливания с целью защиты нити от химического разложения. Химическая инертность материалов, обеспечиваемая вакуумом, также полезна для электронно-лучевой сварки, холодной сварки, вакуумной упаковки и вакуумной жарки. Сверхвысокий вакуум используется при изучении атомарно чистых субстратов, так как только очень высокий вакуум сохраняет поверхности чистыми на атомарном уровне в течение досточно длительного времени (от минут до суток). При высоком и сверхвысоком вакуумуировании устраняется противодействие воздуха, позволяя пучкам частиц осаждать или удалять материалы без загрязнения. Этот принцип лежит в основе химического осаждения из газовой фазы, вакуумного напыления и сухого травления, которые применяются в производстве полупроводников и оптических покрытий, а также в химии поверхности. Снижение конвекции обеспечивает теплоизоляцию в термосах. Глубокий вакуум понижает температуру кипения жидкости и способствует низкой температуре дегазации, которое используется в сублимационной сушке, приготовлении клея, перегонке, металлургии и вакуумной очистке. Электрические свойства вакуума делают возможными электронные микроскопы и вакуумные трубки, включая катодные лучевые трубки. Вакуумные выключатели используются в электрических распределительных устройствах. Вакуумный пробой имеет промышленное значение для производства определенных марок стали или материалов высокой чистоты. Исключение трения воздуха полезно для накопления энергии маховика и ультрацентрифуг.
Управляемые вакуумом машины
Вакуум обычно используется, чтобы произвести всасывание, которое имеет ещё более широкий спектр применения. Паровой двигатель Ньюкомена использовал вакуум вместо давления, чтобы управлять поршнем. В XIX веке вакуум был использован для тяги на экспериментальной пневматической железной дороге Изамбарда Брунеля. Вакуумные тормоза когда-то широко использовались на поездах в Великобритании, но, за исключением исторических железных дорог, они были заменены пневматическими тормозами.
Этот насос мелководной скважины уменьшает давление атмосферы внутри собственной камеры. Разрежение атмосферы расширяется вниз в скважину и заставляет воду течь вверх по трубе в насос, чтобы выровнять пониженное давление. Насосы с наземной камерой эффективны только до глубины около 9 метров, за счет веса столба воды уравнивающего атмосферное давление.Вакуум впускного коллектора можно использовать для того, чтобы управлять вспомогательным оборудованием на автомобилях. Наиболее известное применение — это вакуумный усилитель для увеличения мощности тормозов. Ранее вакуум применялся в вакуум-приводах стеклоочистителя и топливных насосах Autovac. Некоторые авиационные приборы (авиагоризонт и указатель курса) обычно управляются вакуумом, как страховка от выхода из строя всех (электрических) приборов, поскольку ранние самолеты часто не имели электрических систем, и поскольку есть два легкодоступных источников вакуума на движущемся самолете, двигатель и трубка Вентури. При вакуумноиндукционной плавке применяют электромагнитную индукцию в вакууме.
Поддержание вакуума в конденсаторе важно для эффективной работы паровых турбин. Для этого используется паровой инжектор или водокольцевой насос. Обычный вакуум, поддерживаемый в паровом объёме конденсатора на выхлопном патрубке турбины (еще его называют давление конденсатора турбины), находится в диапазоне от 5 до 15 кПа, в зависимости от типа конденсатора и условий окружающей среды.
Дегазация
Испарение и сублимация в вакууме называется дегазацией. Все материалы, твердые или жидкие, немного парят (происходит газовыделение), и их дегазация необходима когда давление вакуума падает ниже давления их пара. Парение материалов в вакууме имеет такое же эффект как натекание и может ограничить достижимый вакуум. Продукты испарения могут конденсироваться на близлежащих более холодных поверхностях, что может вызвать проблемы, если они покроют оптические приборы или вступят в реакцию с другими материалами. Это вызывает большие трудности при полётах в космосе, где затемненный телескоп или элемент солнечной батареи может сорвать высокозатратную операцию.
Самым распространенным выделяющимся продуктом в вакуумных системах является вода, поглощенная материалами камер. Её количество может быть уменьшено сушкой или прогревом камеры и удалением абсорбирующих материалов. Испаряющаяся вода может конденсироваться в масле пластинчато-роторных насосов и резко уменьшить их рабочую скорость, если не используется газобалластное устройство. Высоковакуумные системы должны быть чистыми, в них не должно оставаться органических веществ, чтобы свести к минимуму газовыделение.
Сверхвысокие вакуумные системы, как правило, отжигаются, желательно под вакуумом, чтобы временно повысить испарение всех материалов и выпарить их. После того, как большая часть испаряющихся материалов выпарена и удалена, система может быть охлаждена, для уменьшения парения материалов и минимизации остаточного газовыделения во время рабочей эксплуатации. Некоторые системы охлаждают существенно ниже комнатной температуры с помощью жидкого азота для полного прекращения остаточного газовыделения и одновременно создания эффекта криогенной откачки системы.
Откачка и атмосферное давление
Газы вообще нельзя вытолкнуть, поэтому вакуум не может быть создан всасыванием. Всасывание может распространить и разбавить вакуум, позволяя высокому давлению вводить в него газы, но, прежде чем всасывание может произойти, необходимо вакуум создать. Самый простой способ создать искусственный вакуум — расширить объем камеры. Например, мышца диафрагмы расширяет грудную полость, что приводит к увеличению объема легких. Это расширение уменьшает давление и создает низкий вакуум, который вскоре заполняется воздухом, нагнетаемым атмосферным давлением.
Чтобы продолжать опустошение камеры бесконечно, не используя постоянно её увеличение, вакуумирующий её отсек может быть закрыт, продут, расширен снова, и так много раз. Это принцип работы насосов с принудительным вытеснением (газопереносных), например, ручной водяной насос. Внутри насоса механизм расширяет небольшую герметичную полость для создания вакуума. Из-за перепада давления часть жидкости из камеры (или колодца, в нашем примере) вталкивается в маленькую полость насоса. Затем полость насоса герметично закрывается от камеры, открывается в атмосферу и сжимается до минимального размера, выталкивая жидкость.
Приведенное выше объяснение представляет собой простое введение в вакуумирование и не является типичным для всего диапазона используемых насосов. Разработаны много вариаций насосов с принудительным вытеснением, и множество конструкций насосов основаны на радикально других принципах. Насосы передачи импульса, которые имеют некоторое сходство с динамическими насосами, используемыми при более высоких давлениях, могут обеспечить намного более высокое качество вакуума, чем насосы с принудительным вытеснением. Газосвязывающие насосы способные захватывать газы в твердом или поглощенном состоянии, работают часто без движущихся частей, без уплотнений и без вибрации. Ни один из этих насосов не является универсальным; каждый тип имеет серьезные ограничения применения. У всех есть трудности с откачкой газов с малой массой молекул, особенно водорода, гелия и неона.
Самое низкое давление, которое может быть достигнуто в системе, кроме устройства насосов, также зависит от многих факторов. Несколько насосов могут быть соединены последовательно, в так называемые ступени, для достижения более высокого вакуума. Выбор уплотнений, геометрии камеры, материалов и процедур откачки — всё будет иметь эффект. В совокупности всё это называют вакуумной техникой. И иногда, итоговое давление — не единственная существенная характеристика. Насосные системы отличаются масляным загрязнением, вибрацией, избирательной откачкой определенных газов, скоростями откачки, прерывистостью эксплуатации, надежностью или устойчивостью к высоким скоростям натекания.
В системах со сверхвысоким вакуумом необходимо учитывать некоторые очень «странные» пути натекания и источники парения. Неприемлемым источником испарений становится способность к водопоглощению алюминия и палладия, приходится учитывать даже адсорбционную способность твердых металлов, таких как нержавеющая сталь или титан. Некоторые масла и смазки будут кипеть при высоком вакууме. Возможно, придется учитывать проницаемость металлических стенок камер, и направление зёрен металлических фланцев должно быть параллельным торцу фланца.
Самые низкие давления, которые в настоящее время достижимы в лабораторных условиях, составляют около 10-13 торр (13 пПа). Однако, давления ниже, чем 5×10-17 торр (6.7 фПа) были косвенно измеряемы криогенной вакуумной системе. Это соответствует ≈100 частиц / см3.
См. также
Применения:
Примечания
- ↑ Chambers, Austin. Modern Vacuum Physics. — Boca Raton : CRC Press, 2004. — ISBN 0-8493-2438-6.
- ↑ Tadokoro, M. (1968). «A Study of the Local Group by Use of the Virial Theorem». Publications of the Astronomical Society of Japan 20. Bibcode: 1968PASJ…20..230T.
- ↑ Родин А. М., Дружинин А. В. Вакуум // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 235—236. — 707 с. — 100 000 экз.
- ↑ Werner S. Weiglhofer. § 4.1 The classical vacuum as reference medium // Introduction to complex mediums for optics and electromagnetics / Werner S. Weiglhofer and Akhlesh Lakhtakia, eds. — SPIE Press, 2003. — P. 28, 34. — ISBN 978-0-8194-4947-4.
- ↑ Tom G. MacKay. Electromagnetic Fields in Linear Bianisotropic Mediums // Progress in Optics, Volume 51 / Emil Wolf. — Elsevier, 2008. — P. 143. — ISBN 978-0-444-52038-8.
- ↑ Физическая энциклопедия, т.5. Стробоскопические приборы — Яркость/ Гл. ред. А. М. Прохоров. Ред.кол.: А. М. Балдин,А. М. Бонч-Бруевич и др. — М.:Большая Российская Энциклопедия,1994, 1998.-760 с.:ил. ISBN 5-85270-101-7 , стр.644
- ↑ Галилей Г. Избранные труды в двух томах. / Составитель У. И. Франкфурт. — Том 2. — М.: Наука, 1964.
- ↑ Schotti H.G. Technica Curiosa. 1664.
- ↑ Horror Vacui? — Raffaello Magiotti (1597—1656) — IMSS.
- ↑ Cornelis De Waard. L’experience barometrique. Ses antecedents et ses explications. Thouars, 1936. P. 181.
- ↑ How to Make an Experimental Geissler Tube, Popular Science monthly, February 1919, Unnumbered page, Scanned by Google Books: https://books.google.com/books?id=7igDAAAAMBAJ&pg=PT3
- ↑ В. П. Борисов (Институт истории естествознания и техники им. С. И. Вавилова РАН.). Изобретение, давшее дорогу открытиям: В 2002 г. исполнилось 400 лет со дня рождения изобретателя вакуумного насоса Отто фон Герике // Вестник Российской академии наук. — 2003. — Т. 73, № 8. — С. 744—748.
- ↑ В. П. Борисов, Изобретение вакуумного насоса и крушение догмы «Боязни Пустоты» // Вопросы истории естествознания и техники, № 4, 2002
- ↑ Landis, Geoffrey Human Exposure to Vacuum. www.geoffreylandis.com (7 August 2007). Проверено 25 марта 2006.
- ↑ Billings, Charles E. Chapter 1) Barometric Pressure // Bioastronautics Data Book / Parker, James F.; West, Vita R.. — Second. — NASA, 1973. — P. 5. — ISBN NASA SP-3006.
- ↑ Webb P. (1968). «The Space Activity Suit: An Elastic Leotard for Extravehicular Activity». Aerospace Medicine 39 (4): 376–383. PMID 4872696.
- ↑ Cooke JP, RW Bancroft (1966). «Some Cardiovascular Responses in Anesthetized Dogs During Repeated Decompressions to a Near-Vacuum». Aerospace Medicine 37 (11): 1148–1152. PMID 5972265.
- ↑ Harding, Richard M. Survival in Space: Medical Problems of Manned Spaceflight. — Routledge, 1989. — ISBN 0-415-00253-2..
- ↑ American Vacuum Society. Glossary. AVS Reference Guide. Проверено 15 марта 2006. Архивировано 15 июня 2013 года.
- ↑ National Physical Laboratory, UK. What do ‘high vacuum’ and ‘low vacuum’ mean? (FAQ – Pressure). Проверено 22 апреля 2012. Архивировано 15 июня 2013 года.
Литература
- Борисов В.П. Вакуум: от натурфилософии до диффузионного насоса. — М.: НПК «Интелвак», 2001.
- Научные основы вакуумной техники. — М., 1964.
- Грошковский Я. Техника высокого вакуума. — М., 1975.
- Основы вакуумной техники. 2-е изд. — М., 1981.
- Розанов Л. И. Вакуумная техника. 2-е изд. — М., 1990.
- L. B. Okun. On the concepts of vacuum and mass and the search for higgs (англ.) // Modern Physics Letters A. — 2012. — Vol. 27. — P. 1230041. — DOI:10.1142/S0217732312300418. — arXiv:1212.1031.
- Крамер Д. и др. Точные решения уравнений Эйнштейна. М.: Мир, 1982. — 416 с.
- Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.
- Паули В. Теория относительности. М.: Наука, 1991
- Гриб А. А. Проблема неинвариантности вакуума в квантовой теории поля. М.: Атомиздат, 1978
wikipedia.green
Из чего состоит Вакуум
Физический вакуум. Пустота – ткань Вселенной.
Аннотация
Физический вакуум является особым видом материи, претендующим на первооснову мира.
Авторы исследуют физический вакуум как целостный физический объект, которому не свойственна множественность и разложимость на части. Такой континуальный физический объект является наиболее фундаментальным видом физической реальности. Свойство континуальности придает ему наибольшую общность и не накладывает ограничений, свойственных множеству других объектов и систем. Континуальный вакуум расширяет класс известных физических объектов. Континуальный вакуум имеет наибольшую энтропию среди всех известных физических объектов и систем и является физическим объектом принципиально недоступным для приборного наблюдения. Приведены 3D-анимации вакуумных эффектов.
1. Научные и философские проблемы вакуума
Физический вакуум стал предметом изучения физики благодаря усилиям известных ученых: П.Дирака, Р.Фейнмана, Дж.Уилера, У.Лэмба, де Ситтера, Г.Казимира, Г.И.Наана,
Я.Б.Зельдовича, А.М.Мостепаненко В.М.Мостепаненко и др. Понимание физического вакуума как не пустого пространства сформировалось в квантовой теории поля. Теоретические исследования указывают на реальность существования в физическом вакууме энергии нулевых колебаний.
Поэтому внимание исследователей привлекают новые физические эффекты и феномены в надежде на то, что они позволят подступиться к океану вакуумной энергии. Достижению реальных результатов, в плане практического использования энергии физического вакуума, мешает непонимание его природы. Загадка природы физического вакуума остается одной из нерешенных проблем фундаментальной физики.
Ученые считают физический вакуум особым состоянием материи, претендующим на первооснову мира. В ряде философских концепций в качестве основы мира рассматривается категория «ничто». Ничто не считается пустотой, а рассматривается как «содержательная пустота».
При этом подразумевается, что «ничто», лишенное конкретных свойств и ограничений, присущих обычным физическим объектам, должно обладать особой общностью и фундаментальностью и,
таким образом, охватывать все многообразие физических объектов и явлений. Таким образом, «ничто» причисляется к ключевым категориям и отвергается принцип ex nigilo nigil fit (из “ничто” ничего не возникает). Философы древнего Востока утверждали, что наиболее фундаментальная реальность мира не может иметь никаких конкретных характеристик и, тем самым, напоминает небытие. Очень похожими признаками современные ученые наделяют физический вакуум. При этом, физический вакуум, будучи относительным небытием и «содержательной пустотой»,
является вовсе не самым бедным, а наоборот, самым содержательным, самым «богатым» видом физической реальности. Считается, что физический вакуум, являясь потенциальным бытием,
способен порождать все множество объектов и явлений наблюдаемого мира. Таким образом,
физический вакуум претендует на статус онтологического базиса материи. Несмотря на то, что актуально физический вакуум не состоит из каких-либо частиц или полей, он содержит все потенциально. Поэтому, вследствие наибольшей общности, он может выступать в качестве онтологической основы всего многообразия объектов и явлений в мире. В этом смысле, пустота – самая содержательная и наиболее фундаментальная сущность. Такое понимание физического вакуума заставляет признать реальность существования не только в теориях, но и в Природе и
«ничто» и «нечто». Последнее существует как проявленное бытие – в виде наблюдаемого вещественно-полевого мира, а «ничто» существует как не проявленное бытие – в виде физического вакуума. В этом смысле, не проявленное бытие следует рассматривать как самостоятельную физическую сущность, обладающую наибольшей фундаментальностью.
2. Проявление свойств физического вакуума в экспериментах
Физический вакуум непосредственно не наблюдается, но проявление его свойств регистрируется в экспериментах. В физике известен ряд вакуумных эффектов. К ним относятся:
рождение электронно-позитронной пары, эффект Лэмба-Ризерфорда, эффект Казимира, эффект Унру. В результате поляризации вакуума электрическое поле заряженной частицы отличается от кулоновского. Это приводит к лембовскому сдвигу энергетических уровней и к появлению аномального магнитного момента у частиц. При воздействии фотона на физический вакуум в поле ядра возникают вещественные частицы – электрон и позитрон.
В 1965 году В.Л. Гинзбург и С.И. Сыроватский указали на то, что ускоренный протон нестабилен и должен распадаться на нейтрон, позитрон и нейтрино. В ускоренной системе должен присутствовать тепловой фон различных частиц. Наличие этого фона известно как эффект Унру и связано с различным состоянием вакуума в покоящейся и ускоренной системах отсчета.
Эффект Казимира состоит в возникновении силы, сближающей две пластины, находящиеся в вакууме. Эффект Казимира указывает на возможность извлечения механической энергии из вакуума. На рис.1 схематически показан эффект Казимира в физическом вакууме. 3D-анимация этого процесса показана на рис.1
Рис.1. Проявление силы Казимира в физическом вакууме.
Перечисленные физические эффекты указывают на то, что вакуум не является пустотой, а
выступает в качестве реального физического объекта.
3.Модели физического вакуума
Всовременной физике предпринимаются попытки представить физический вакуум различными моделями. Многие ученые, начиная с П. Дирака, пытались найти модельные представления, адекватные физическому вакууму. В настоящее время известны: вакуум Дирака,
вакуум Уилера, вакуум де Ситтера, вакуум квантовой теории поля, вакуум Тэрнера-Вилчека и др.
Вакуум Дирака является одной из первых моделей. В ней физический вакуум представлен «морем»
заряженных частиц, находящихся в самом низком энергетическом состоянии. На рис.2 показана модель электронно-позитронного физического вакуума — “море Дирака”. 3D-анимация процессов в море Дирака показана на рис. 2
Рис.2. Модель физического вакуума — “море Дирака”.
Вакуум Уилера состоит из геометрических ячеек планковских размеров. Согласно Уилеру все свойства реального мира и сам реальный мир есть не что иное, как проявление геометрии пространства.
Вакуум де Ситтера представлен совокупностью частиц с целочисленным спином,
находящихся в низшем энергетическом состоянии. В модели де Ситтера физический вакуум обладает свойством, совершенно не присущим любому состоянию вещества. Уравнение состояния такого вакуума, связывающее давление Р и плотность энергии W, имеет необычный вид: .
Причина появления такого экзотического уравнения состояния связана с представлением вакуума многокомпонентной средой, в которой для компенсации сопротивления среды движущимся частицам введено понятие отрицательного давления. На рис.3 условно показана модель вакуума де Ситтера.
Рис.3. Модель физического вакуума де Ситтера.
Вакуум квантовой теории поля содержит в виртуальном состоянии всевозможные частицы.
Эти частицы лишь на короткое время могут появляться в реальном мире и снова переходят в виртуальное состояние. На рис.4 показана модель вакуума квантовой теории поля. 3D-анимация процесса возникновения и исчезновения виртуальных частиц показана на рис 4.
Рис.4. Модель физического вакуума квантовой теории поля.
Вакуум Тэрнера-Вилчека представлен двумя проявлениями – «истинным» вакуумом и
«ложным» вакуумом. То, что в физике считается самым низким энергетическим состоянием, есть
«ложный» вакуум, а истинно нулевое состояние находится ниже по энергетической лестнице. При этом считается, что «ложный» вакуум может переходить в состояние «истинного» вакуума.
Вакуум Герловина представлен несколькими проявлениями. И.Л. Герловин разработал специфический вариант «Единой теории поля». Он назвал свой вариант данной теории – «Теория фундаментального поля». Теория фундаментального поля основана на физико-математической модели «расслоенных пространств». Физический вакуум, согласно теории фундаментального поля представляет собой смесь нескольких видов вакуума в соответствии с видом образующих их
«голых» элементарных частиц. Каждый вид вакуума состоит из не проявляющих себя в
«лабораторном» подпространстве элементарных частиц вакуума, каждая из которых состоит из фермион-антифермионной пары «голых» элементарных частиц. В теории фундаментального поля существует девять видов вакуума. Заметно проявляют себя в физическом мире только два вида вакуума, имеющие наибольшую плотность – протон-антипротонный вакуум и электрон-
позитронный вакуум. По мнению Герловина основные свойства «лабораторного» физического вакуума, например, диэлектрическая проницаемость, определяются свойствами протон-
антипротонного вакуума.
Фитонная модель вакуума предполагает, что невозмущенный вакуум состоит из вложенных друг в друга фитонов, имеющих противоположные спины. По мнению авторов этой модели в среднем такая среда нейтральна, обладает нулевой энергией и нулевым спином.
Физический вакуум как модель квантовой жидкости состоит из фотонных частиц (ф – частиц). В этой модели фотонные частицы расположены в определенном порядке, наподобие кристаллической решетки.
Физический вакуум может быть также представлен как сверхтекучая жидкость, состоящая из фермион-антифермионных пар с ненулевой массой покоя.
Существующие модели физического вакуума весьма противоречивы. Однако большинство предложенных концепций и модельных представлений физического вакуума несостоятельны как в теоретическом, так и в экспериментальном планах. Это относится и к «морю Дирака», и к модели
«расслоенных пространств», и к другим моделям. Причина состоит в том, что в сравнении со всеми другими видами физической реальности физический вакуум имеет ряд парадоксальных свойств, что ставит его в ряд объектов, трудно поддающихся моделированию. Обилие различных модельных представлений вакуума указывает на то, что до сих пор отсутствует модель, адекватная реальному физическому вакууму.
4. Проблемы создания теории физического вакуума
Современная физика стоит на пороге перехода от концептуальных представлений о физическом вакууме к теории физического вакуума. Современные концепции физического вакуума имеют существенный недостаток – они отягощены геометрическим подходом. Проблема,
с одной стороны, состоит в том, чтобы не представлять физический вакуум геометрическим объектом, а с другой стороны, оставляя физический вакуум в статусе физической сущности, не подходить к его изучению с механистических позиций. Создание непротиворечивой теории физического вакуума требует прорывных идей, далеко выходящих за рамки традиционных подходов.
Реальность такова, что в рамках квантовой физики, породившей саму концепцию физического вакуума, теория вакуума не состоялась. Не удалось создать теорию вакуума и в рамках классических представлений. Становится все более очевидным, что «зона жизни» будущей теории физического вакуума должна находиться за пределами квантовой физики и, скорее всего,
ей предшествовать. По всей видимости, квантовая теория должна быть следствием и продолжением теории физического вакуума, коль скоро физическому вакууму отводится роль наиболее фундаментальной физической сущности, роль основы мира. Будущая теория физического вакуума должна удовлетворять принципу соответствия. В таком случае теория физического вакуума должна естественным образом переходить в квантовую теорию. Для построения теории физического вакуума важно получить ответ на вопрос: «какие константы относятся к физическому вакууму?» Если считать, что физический вакуум является онтологической основой мира, то его константы должны выступать в качестве онтологического базиса всех физических констант. Эта проблема исследовалась и были предложены пять первичных суперконстант, от которых происходят фундаментальные физические и космологические константы. Эти константы могут быть отнесены к физическому вакууму. На рис. 5 приведены пять универсальных физических суперконстант и их значения.
Рис. 5. Универсальные физические суперконстанты.
В настоящее время преобладает концепция, в рамках которой считается, что вещество происходит из физического вакуума и свойства вещества проистекают из свойств физического вакуума. Такой концепции придерживались П. Дирак, Ф.Хойл, Я.Б.Зельдович, Э.Трайон и др. Я.Б.
Зельдович исследовал даже более амбициозную задачу – происхождение всей Вселенной из вакуума. Он показал, что твердо установленные законы Природы при этом не нарушаются. Строго выполняются закон сохранения электрического заряда и закон сохранения энергии. Единственный закон, который не выполняется при рождении Вселенной из вакуума – это закон сохранения барионного заряда. Остается непонятным, куда подевалось огромное количество антивещества,
которое в равном количестве с веществом должно было появиться из физического вакуума.
Есть все основания считать, что создание теории физического вакуума позволит не только расширить знания об устройстве мира, но и прикоснуться к тайне его происхождения.
5. Несостоятельность концепции дискретного вакуума
Идеи о том, что какие-либо дискретные частицы могут составлять основу физического вакуума, оказались несостоятельными как в теоретическом плане, так и в практическом приложении. Подобные идеи вступают в противоречие с фундаментальными принципами физики,
например, с принципом Паули. Если считать, что физический вакуум состоит из частиц с целочисленным спином, то опять же возникают проблемы по типу экзотического уравнения состояния, как это происходит, например, в модели де Ситтера.
Как считал П. Дирак, физический вакуум порождает дискретное вещество. Это значит, что физический вакуум должен генетически предшествовать веществу. Чтобы понять суть физического вакуума, надо оторваться от стереотипного понимания «состоять из…». Мы привыкли, что наша атмосфера — это газ, состоящий из молекул. Долгое время в науке господствовало понятие «эфир». И сейчас можно встретить сторонников концепции светоносного эфира или существования в физическом вакууме газа из гипотетических частиц. Все попытки найти место «эфиру» или иным дискретным объектам в концепциях вакуума или в моделях
вакуума не привели к пониманию сущности физического вакуума. Статус такого вида физической реальности, каким являются дискретные частицы, всегда вторичен. Вновь и вновь будет возникать задача выяснения происхождения дискретных частиц и, соответственно, поиска более фундаментальной сущности.
Можно сделать вывод, что концепции дискретного вакуума принципиально несостоятельны. Весь путь развития физики показал, что никакая частица не может претендовать на фундаментальность и выступать в качестве основы мироздания. Дискретность свойственна веществу. Вещество не имеет первичного статуса, оно происходит из физического вакуума,
поэтому оно принципиально не может выступать в качестве фундаментальной основы мира.
Поэтому физический вакуум не должен иметь признаков, свойственных веществу. Он не должен быть дискретным. Он является антиподом вещества. Его основной признак – континуальность.
Осознание системной организации вещественного мира и материального единства мира,
является величайшим достижением человеческой мысли. К этой системе мира добавилась еще одна подсистема – физический вакуум. Однако существующая система структурных уровней организации мира пока выглядит незавершенной. Она не ориентирована на генетическую взаимосвязь уровней и на естественное развитие. Она не завершена снизу и сверху.
Незавершенность снизу предполагает выяснение величайшей тайны природы — механизма происхождения дискретного вещества из континуального вакуума. Незавершенность сверху требует раскрытия не меньшей тайны — связи физики микромира и физики Вселенной.
Современные физические теории, в попытках найти фундаментальные физические объекты, демонстрируют тенденцию перехода от частиц – трехмерных объектов, к объектам нового вида, имеющим меньшую размерность. Например, в теории суперструн размерность объектов-суперструн намного меньше размерности пространства. Фундаментальные струны понимаются как 1-мерные объекты. Они бесконечно тонкие, а длина их порядка 10-33 см.
Считается, что у физических объектов, имеющих меньшую размерность, больше оснований претендовать на фундаментальный статус. В тенденции перехода к фундаментальным объектам,
имеющим меньшую размерность, перспективным, на наш взгляд, является подход В. Жвирблиса.
Жвирблис утверждает, что физический вакуум – непрерывная материальная среда. По аналогии с
«нитью Пеано», бесконечно плотно заполняющей двумерное пространство, условно разбитое на квадраты, автор предлагает новую модель физического вакуума – «нить Жвирблиса», бесконечно плотно заполняющую трехмерное пространство, условно разбитое на тетраэдры.
На рис.6 показана модель вакуума Жвирблиса.
Рис. 6. Нить Жвирблиса.
По нашему мнению, это большой прорыв в понимании сущности физического вакуума как фундаментальной основы мира. Жвирблис, в отличие от других ученых, в качестве модели физического вакуума рассматривает не многокомпонентную среду, а одномерный математический объект – «нить Жвирблиса». В отличие от всех известных моделей, в его модели дискретности и множественности отведено самое минимальное место – используется одномерный математический объект. В пределе понимается, что при сверхплотном заполнении пространства среда становится непрерывной.
На рисунке 7 показана тенденция перехода к объектам, имеющим меньшую размерность. Мы считаем, что в этой тенденции поиска наиболее фундаментального объекта недоставало решающего шага – перехода к нуль-мерному объекту. Эта проблема исследовалась и было предложено, что физический вакуум, в отличие от традиционного понимания, представлен как нуль-мерный физический объект.
Рис.7. Тенденция в физических теориях: переход от трехмерных объектов к нуль-мерному объекту.
Фундаментальные объекты в теории суперструн имеют планковские размеры. Тем не менее, пока нет убедительных доводов, что «планкеоны» или «суперструны» составляют основу мира. Нет оснований считать, что не существует объектов, имеющих размеры меньше планковских. В этом контексте следует заметить, что планковские естественные единицы не являются единственными. В физике известны константы Джорджа Стони, образованные комбинацией констант G, c, e. Они имеют меньшие значения по сравнению с планковскими
единицами, и вполне могут выступать конкурентами планковским единицам. Единицы Планка и единицы Стони исследовались и были предложены новые системы естественных единиц,
относящиеся к глубинным уровням организации материи в микромире ниже планковского уровня.
Новые системы естественных единиц образованы гравитационной константой G, зарядом электрона e, скоростью света c, постоянной Ридберга R∞, постоянной Хаббла H0.
На рис.8, для сравнения, приведены значения планковских естественных единиц, естественных единиц Джорджа Стони и новых естественных единиц.
Рис. 8. Естественные единицы М. Планка, естественные единицы Дж. Стони и новые естественные единицы.
Подход, в рамках которого считается, что физический вакуум существует в виде непрерывной среды является многообещающим. При таком подходе к физическому вакууму находит объяснение его ненаблюдаемость. Не следует связывать ненаблюдаемость физического вакуума с несовершенством приборов и способов исследования. Физический вакуум – принципиально ненаблюдаемая среда – это прямое следствие его непрерывности. Наблюдаемыми являются только вторичные проявления физического вакуума – поле и вещество. Для континуального физического объекта нельзя указать никаких других свойств, кроме свойства непрерывности. К континуальному объекту неприменимы никакие меры, это антипод всему дискретному.
Физика, на примере проблемы физического вакуума, сталкивается с коллизией непрерывности и дискретности, с которой столкнулась математика в теории множеств. Попытка разрешить противоречие непрерывности и дискретности в математике была предпринята Кантором (континуум-гипотеза Кантора). Эту гипотезу не удалось доказать ни ее автору, ни другим выдающимся математикам. В настоящее время причина неудач выяснена. В соответствии с выводами П.Коэна: сама идея множественной, дискретной структуры континуума является ложной [6]. Распространяя этот результат на континуальный вакуум можно утверждать: «идея множественной или дискретной структуры физического вакуума является ложной».
С учетом парадоксальных свойств и признаков можно констатировать, что континуальный вакуум является новым видом физической реальности, с которым физика еще не сталкивалась.
6.Критерии фундаментальности
Всвязи с тем, что физический вакуум претендует на фундаментальный статус, более того,
даже на онтологический базис материи, он должен обладать наибольшей общностью и ему не должны быть присущи частные признаки, характерные для множества наблюдаемых объектов и явлений. Известно, что присвоение объекту какого-либо дополнительного признака уменьшает универсальность этого объекта. Так, например, ножницы – универсальное понятие. Добавление какого-либо признака сужает круг охватываемых этим понятием объектов (ножницы бытовые,
слесарные, кровельные, дисковые, гильотинные, портновские и т.п.). Таким образом, приходим к выводу, что на онтологический статус может претендовать такая сущность, которая лишена каких-
либо признаков, мер, структуры и которую принципиально нельзя моделировать, поскольку любое моделирование предусматривает использование дискретных объектов и наделение моделируемого объекта конкретными признаками и мерами. Физическая сущность, претендующая на фундаментальный статус не должна быть составной, поскольку составная сущность имеет вторичный статус по отношению к ее составляющим.
Таким образом, требование фундаментальности и первичности для физического объекта влечет за собой выполнение следующих основных условий:
1.Не быть составным.
2.Иметь наименьшее количество признаков, свойств и характеристик.
3.Иметь наибольшую общность для всего многообразия объектов и явлений.
4.Быть потенциально всем, а актуально ничем.
5.Не иметь никаких мер.
Не быть составным – это означает не содержать в себе ничего, кроме самого себя, т.е. быть целостным объектом. Относительно второго условия идеальным должно быть требование — совсем не иметь признаков. Иметь наибольшую общность для всего многообразия объектов и явлений – это означает не обладать признаками частных, конкретных объектов, поскольку любая конкретизация сужает общность. Быть потенциально всем, а актуально ничем – это означает оставаться ненаблюдаемым и одновременно быть основой всему сущему. Не иметь никаких мер – это означает быть континуальным объектом.
Эти пять условий первичности и фундаментальности чрезвычайно созвучны с мировоззрением философов древности, в частности, представителей школы Платона. Они считали,
что мир возник из фундаментальной сущности – из изначального Хаоса. По их воззрениям Хаос породил все существующие структуры Космоса. При этом Хаосом они считали такое состояние системы, которое остается на конечном этапе по мере некоего условного устранения всех возможностей проявления ее свойств и признаков.
studfile.net
Вакуум — Википедия. Что такое Вакуум
Насос для демонстрации вакуумаВа́куум (от лат. vacuus — пустой) — пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, состоящую из газа при давлении значительно ниже атмосферного[1]. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером среды d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (λ/d≪1{\displaystyle \lambda /d\ll 1}), средний (λ/d∼1{\displaystyle \lambda /d\sim 1}) и высокий (λ/d≫1{\displaystyle \lambda /d\gg 1}) вакуум.
Технический вакуум
На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в частности толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.
Мерой степени разрежения вакуума служит длина свободного пробега молекул газа λ{\displaystyle \lambda }, связанной с их взаимными столкновениями в газе, и характерного линейного размера d{\displaystyle d} сосуда, в котором находится газ.
Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 мм рт.ст.), говорят о достижении низкого вакуума (λ≪d{\displaystyle \lambda \ll d}; 1016 молекул на 1 см³). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ{\displaystyle \lambda } молекул газа. При λ/d≫1{\displaystyle \lambda /d\gg 1} молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме (10−5 мм рт.ст.; 1011 молекул на 1 см³). Сверхвысокий вакуум соответствует давлению 10−9 мм рт.ст. и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием сканирующего туннельного микроскопа. Для сравнения, давление в космосе на несколько порядков ниже — 109 молекул на 1 см³ (миллиард молекул в кубическом сантиметре), в дальнем же космосе и вовсе может достигать 10−16 мм рт.ст. и ниже (1 молекула на 1 см³)[2].
Высокий вакуум в микроскопических порах некоторых кристаллов и в ультратонких капиллярах достигается уже при атмосферном давлении, поскольку диаметр поры/капилляра становится меньше, чем длина свободного пробега молекулы, равная в воздухе при нормальных условиях ~60 нанометрам[3].
Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере и т. д. Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов — это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например, титан) и криосорбционные насосы (в основном, для создания форвакуума).
Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.
Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах (сосудах Дьюара), состоящих из ёмкости с двойными стенками, пространство между которыми вакуумировано.
Вакуум широко применяется в электровакуумных приборах — радиолампах (например, магнетронах микроволновых печей), электронно-лучевых трубках и т. п.
Физический вакуум
Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии[4][5]. Такое состояние не является абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.
Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира[6] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.
Ложный вакуум
Ложный вакуум — состояние в квантовой теории поля, которое не является состоянием с глобально минимальной энергией, а соответствует её локальному минимуму. Такое состояние стабильно в течение определённого времени (метастабильно), но может «туннелировать» в состояние истинного вакуума.
Эйнштейновский вакуум
Эйнштейновский вакуум — иногда встречающееся название для решений уравнений Эйнштейна в общей теории относительности для пустого, без материи, пространства-времени. Синоним — пространство Эйнштейна.
Уравнения Эйнштейна связывают метрику пространства-времени (метрический тензор gμν) с тензором энергии-импульса. В общем виде они записываются как
- Gμν+Λgμν=8πGc4Tμν,{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu },}
где тензор Эйнштейна Gμν является определённой функцией метрического тензора и его частных производных, R — скалярная кривизна, Λ — космологическая постоянная, Tμν — тензор энергии-импульса материи, π — число пи, c — скорость света в вакууме, G — гравитационная постоянная Ньютона.
Вакуумные решения этих уравнений получаются при отсутствии материи, то есть при тождественном равенстве нулю тензора энергии-импульса в рассматриваемой области пространства-времени: Tμν = 0. Часто лямбда-член также принимается равным нулю, особенно при исследовании локальных (некосмологических) решений. Однако при рассмотрении вакуумных решений с ненулевым лямбда-членом (лямбда-вакуум) возникают такие важные космологические модели, как модель Де Ситтера (Λ > 0) и модель анти-Де Ситтера (Λ < 0).
Тривиальным вакуумным решением уравнений Эйнштейна является плоское пространство Минковского, то есть метрика, рассматриваемая в специальной теории относительности.
Другие вакуумные решения уравнений Эйнштейна включают в себя, в частности, следующие случаи:
Космическое пространство
Космическое пространство является не идеальным вакуумом, разреженная плазма заполнена заряженными частицами, электромагнитными полями, а иногда звёздамиКосмическое пространство имеет очень низкую плотность и давление и является наилучшим приближением физического вакуума. Но космический вакуум не является действительно совершенным, даже в межзвёздном пространстве есть несколько атомов водорода на кубический сантиметр.
Звёзды, планеты и спутники держат свои атмосферы силой притяжения, и как таковой у атмосферы нет чётко очерченной границы: плотность атмосферного газа просто уменьшается с расстоянием от объекта. Атмосферное давление Земли падает до примерно 3,2×10−2 Па на 100 км высоты — на так называемой линии Кармана, которая является общим определением границы с космическим пространством. За этой линией изотропное давление газа быстро становится незначительным по сравнению с давлением излучения от Солнца и динамическим давлением солнечного ветра, поэтому определение давления становится трудно интерпретировать. Термосфера в этом диапазоне имеет большие градиенты давления, температуры и состава, и сильно варьируется в связи с космической погодой.
Плотность атмосферы в течение первых нескольких сотен километров выше линии Кармана всё ещё достаточна для оказания значительного сопротивления движению искусственных спутников Земли. Большинство спутников работают в этой области, называемой низкой околоземной орбитой, и должны подрабатывать двигателями каждые несколько дней для поддержания стабильной орбиты.
Космическое пространство заполнено большим количеством фотонов, так называемым реликтовым излучением, а также большим количеством реликтовых нейтрино, пока не поддающихся обнаружению. Текущая температура этих излучений составляет около 3 К, или −270 °C или −454° по Фаренгейту.
История изучения вакуума
Идея вакуума (пустоты) была предметом споров ещё со времён древнегреческих и древнеримских философов. Атомисты — Левкипп (ок. 500 г. до н. э.), Демокрит (около 460—370 гг. до н. э.), Эпикур (341—270 гг. до н. э.), Лукреций (ок. 99—55 гг. до н. э.) и их последователи — предполагали, что всё существующее — атомы и пустота между ними, причём без вакуума не было бы и движения, атомы не могли бы двигаться, если бы между ними не было пустого пространства. Стратон (ок. 270 г. до н. э.) и многие философы в более поздние времена полагали, что пустота может быть «сплошной» (vacuum coacervatum) и «рассеянной» (в промежутках между частицами вещества, vacuum disseminatum).
Напротив, Аристотель (384—322 гг. до н. э.) и ряд других философов считали, что «природа не терпит пустоты». Концепция «боязни пустоты» (horror vacui), зародившаяся ещё до Аристотеля, у Эмпедокла (ок. 490—430 гг. до н. э.) и других философов ионийской школы, в философской мысли Средневековой Европы стала доминирующей и приобрела религиозно-мистические черты.
Некоторые предпосылки к эмпирическому исследованию вакуума существовали ещё в античности. Древнегреческие механики создавали различные технические устройства, основанные на разрежении воздуха. Например, водяные насосы, действующие путём создания разрежения под поршнем, были известны ещё во времена Аристотеля. До нашего времени сохранился рисунок пожарного насоса, изобретённого «отцом пневматики» Ктезибием (ок. 150 г. до н. э.). Водяные насосы такого типа были фактически прообразами вакуумного поршневого насоса, появившегося спустя почти два тысячелетия. Ученик Ктезибия, Герон Александрийский, разработал поршневой шприц для вытягивания гноя, тоже являющийся по существу вакуумным устройством.
Эмпирическое изучение вакуума началось лишь в XVII веке, с концом Возрождения и началом научной революции Нового времени. К этому моменту уже давно было известно, что всасывающие насосы могут поднимать воду на высоту не более 10 метров. Например, в трактате Георгия Агриколы (1494—1555) «О горном деле» приведено изображение цепочки водяных насосов для откачки воды из шахты.
Галилей в своих «Беседах и математических доказательствах двух новых наук»[7] (1638), книге, которая завершила разгром аристотелевской физики, указывал, ссылаясь на практику, что высота, до которой всасывающие насосы поднимают воду, всегда одна и та же — около 18 локтей. В этой книге он, в частности, описывает фактически вакуумный прибор с поршнем, необходимый для сравнения сопротивления на разрыв воды и твёрдого тела, хотя и объясняет сопротивление растяжению, характерное для твёрдых тел и жидкостей, боязнью пустоты, предполагая существование между частицами вещества мельчайших пустых пор, расширяющихся при растяжении.
Под влиянием трактата Галилея, где указывалось на ограниченность «боязни пустоты», в 1639—1643 гг. Гаспаро Берти на фасаде своего дома в Риме соорудил устройство (в более поздней терминологии, барометрическую водяную трубу), которое можно считать первой установкой для физического исследования вакуума. В верхней, стеклянной закрытой части трубы высотой более 10 м, над водяным столбом, уравновешенным атмосферным давлением, обнаруживалось пустое пространство (на самом деле оно было заполнено водяными парами под давлением, равным упругости паров воды при температуре окружающей среды, а также выделившимся из воды растворённым воздухом, то есть давление в полости составляло около 0,1 атмосферы). Эмануэль Маньяно закрепил в этой полости колокольчик и молоток. Воздействуя на молоток магнитом, он ударял молотком по колокольчику. В результате этого первого в истории эксперимента в вакууме (точнее, в разреженном газе) было обнаружено, что звук колокольчика был приглушённым[8].
Учёный Рафаэло Маджотти[9] (1597—1656) из Рима сообщил об опытах Берти и Маньяно ученику Галилея, флорентийцу Эванджелисте Торричелли. При этом Маджотти высказал мысль, что более плотная жидкость остановилась бы на более низком уровне[10]. В 1644 году Торричелли (с помощью Винченцо Вивиани, другого ученика Галилея) сумел создать первую вакуумную камеру. Его работы, связанные с теориями атмосферного давления, послужили основой дополнительных экспериментальных методик. Вакуум по методу Торричелли (торричеллиева пустота) достигается путём наполнения ртутью длинной стеклянной трубки, запаянной с одного конца, а затем переворачиванием её таким образом, чтобы открытый конец трубки оказался под поверхностью ртути в более широком открытом сосуде[11]. Ртуть будет вытекать из трубки, пока сила тяжести ртутного столба не будет скомпенсирована атмосферным давлением. В свободном от ртути пространстве в верхнем, запаянном конце трубки образуется вакуум. Этот метод лежит в основе работы ртутного барометра. При стандартном атмосферном давлении высота ртутного столба, уравновешенного атмосферным давлением, равна 760 мм.
Около 1650 года немецкий учёный Отто фон Герике изобрёл первый вакуумный насос (поршневой цилиндр с водяным уплотнением), позволивший легко откачивать воздух из герметичных ёмкостей и экспериментировать с вакуумом[12]. Насос, названный автором antlia pneumatica, был ещё очень далек от совершенства и требовал не менее трёх человек для манипуляций с поршнем и кранами, погруженными в воду, для лучшей изоляции образующейся пустоты от наружного воздуха. Однако с его помощью Герике сумел продемонстрировать многие свойства вакуума, в частности, поставив знаменитый опыт с Магдебургскими полушариями. Герике создал также водяной барометр, по принципу действия аналогичный ртутному барометру Торричелли, хотя из-за меньшей плотности воды по сравнению с ртутью высота водяного столба, уравновешивающего атмосферное давление, в 13,6 раз больше — около 10 метров. Герике впервые выяснил, что вакуум не проводит звук и что горение в нём прекращается[13].
Вакуумный насос Герике был значительно усовершенствован Робертом Бойлем, что позволило ему выполнить ряд экспериментов для выяснения свойств вакуума и его влияния на различные объекты. Бойль обнаружил, что в вакууме гибнут мелкие животные, огонь потухает, а дым опускается вниз (и, следовательно, так же подвержен влиянию силы тяжести, как и другие тела). Бойль выяснил также, что поднятие жидкости в капиллярах происходит и в вакууме, и тем самым опроверг господствовавшее тогда мнение, что в этом явлении участвует давление воздуха. Напротив, перетекание жидкости через сифон в вакууме прекращалось, чем было доказано, что это явление обусловлено атмосферным давлением. Он показал, что при химических реакциях (таких, как гашение извести), а также при взаимном трении тел тепло выделяется и в вакууме.
Влияние на людей и животных
Люди и животные, подвергшиеся воздействию вакуума, теряют сознание через несколько секунд и умирают от гипоксии в течение нескольких минут, но эти симптомы, как правило, не похожи на те, которые показывают в популярной культуре и СМИ. Снижение давления понижает температуру кипения, при которой кровь и другие биологические жидкости должны закипеть, но упругое давление кровеносных сосудов не позволяет крови достичь температуры кипения 37 °С[14]. Хотя кровь не вскипает, эффект образования газовых пузырьков в ней и других жидкостях тела при низких давлениях, известный как эбуллизм (воздушная эмфизема), является серьёзной проблемой. Газ может раздувать тело в два раза больше его нормального размера, но ткани достаточно эластичны, чтобы предотвратить их разрыв[15]. Отёки и эбуллизм можно предотвратить специальным лётным костюмом. Астронавты шаттлов носили специальную эластичную одежду под названием Crew Altitude Protection Suit (CAPS), которая предотвращает эбуллизм при давлении более 2 кПа (15 мм рт.ст.)[16]. Быстрое испарение воды охлаждает кожу и слизистые оболочки до 0 °С, особенно во рту, но это не представляет большой опасности.
Эксперименты на животных показывают, что после 90 секунд нахождения организма в вакууме обычно происходит быстрое и полное восстановление организма, однако более долгое пребывание в вакууме фатально и реанимация бесполезна[17]. Имеется лишь ограниченный объем данных о влиянии вакуума на человека (как правило, это происходило при попадании людей в аварию), но они согласуются с данными, полученными в экспериментах на животных. Конечности могут находиться в вакууме гораздо дольше, если дыхание не нарушено[18]. Первым показал, что вакуум смертелен для мелких животных, Роберт Бойль в 1660 году.
Измерение
Степень вакуума определяется количеством вещества, оставшимся в системе. Вакуум, в первую очередь, определяется абсолютным давлением, а полная характеристика требует дополнительных параметров, таких как температура и химический состав. Одним из наиболее важных параметров является средняя длина свободного пробега (MFP) остаточных газов, которая указывает среднее расстояние, которое частица пролетает за время свободного пробега от одного столкновения до следующего. Если плотность газа уменьшается, MFP увеличивается. MFP в воздухе при атмосферном давлении очень короткий, около 70 нм, а при 100 мПа (~1×10−3 торр) MFP воздуха составляет примерно 100 мм. Свойства разреженного газа сильно изменяются, когда длина свободного пробега становится сравнима с размерами сосуда, в котором находится газ.
Вакуум подразделяется на диапазоны в соответствии с технологией, необходимой для его достижения или измерения. Эти диапазоны не имеют общепризнанных определений, но типичное распределение выглядит следующим образом[19][20]:
Давление (мм рт.ст.) | Давление (Па) | |
---|---|---|
Атмосферное давление | 760 | 1,013×10+5 |
Низкий вакуум | от 760 до 25 | от 1×10+5 до 3,3×10+3 |
Средний вакуум | от 25 до 1×10−3 | от 3,3×10+3 до 1,3×10−1 |
Высокий вакуум | от 1×10−3 до 1×10−9 | от 1,3×10−1 до 1,3×10−7 |
Сверхвысокий вакуум | от 1×10−9 до 1×10−12 | от 1,3×10−7 до 1,3×10−10 |
Экстремальный вакуум | <1×10−12 | <1,3×10−10 |
Космическое пространство | от 1×10−6 до <3×10−17 | от 1,3×10−4 до <1,3×10−15 |
Абсолютный вакуум | 0 | 0 |
Применение
Вакуум полезен для многих процессов и применяется в разных устройствах. Впервые для массово используемых товаров он был применён в лампах накаливания с целью защиты нити от химического разложения. Химическая инертность материалов, обеспечиваемая вакуумом, также полезна для электронно-лучевой сварки, холодной сварки, вакуумной упаковки и вакуумной жарки. Сверхвысокий вакуум используется при изучении атомарно чистых субстратов, так как только очень высокий вакуум сохраняет поверхности чистыми на атомарном уровне в течение досточно длительного времени (от минут до суток). При высоком и сверхвысоком вакуумуировании устраняется противодействие воздуха, позволяя пучкам частиц осаждать или удалять материалы без загрязнения. Этот принцип лежит в основе химического осаждения из газовой фазы, вакуумного напыления и сухого травления, которые применяются в производстве полупроводников и оптических покрытий, а также в химии поверхности. Снижение конвекции обеспечивает теплоизоляцию в термосах. Глубокий вакуум понижает температуру кипения жидкости и способствует низкой температуре дегазации, которое используется в сублимационной сушке, приготовлении клея, перегонке, металлургии и вакуумной очистке. Электрические свойства вакуума делают возможными электронные микроскопы и вакуумные трубки, включая катодные лучевые трубки. Вакуумные выключатели используются в электрических распределительных устройствах. Вакуумный пробой имеет промышленное значение для производства определенных марок стали или материалов высокой чистоты. Исключение трения воздуха полезно для накопления энергии маховика и ультрацентрифуг.
Управляемые вакуумом машины
Вакуум обычно используется, чтобы произвести всасывание, которое имеет ещё более широкий спектр применения. Паровой двигатель Ньюкомена использовал вакуум вместо давления, чтобы управлять поршнем. В XIX веке вакуум был использован для тяги на экспериментальной пневматической железной дороге Изамбарда Брунеля. Вакуумные тормоза когда-то широко использовались на поездах в Великобритании, но, за исключением исторических железных дорог, они были заменены пневматическими тормозами.
Этот насос мелководной скважины уменьшает давление атмосферы внутри собственной камеры. Разрежение атмосферы расширяется вниз в скважину и заставляет воду течь вверх по трубе в насос, чтобы выровнять пониженное давление. Насосы с наземной камерой эффективны только до глубины около 9 метров, за счет веса столба воды уравнивающего атмосферное давление.Вакуум впускного коллектора можно использовать для того, чтобы управлять вспомогательным оборудованием на автомобилях. Наиболее известное применение — это вакуумный усилитель для увеличения мощности тормозов. Ранее вакуум применялся в вакуум-приводах стеклоочистителя и топливных насосах Autovac. Некоторые авиационные приборы (авиагоризонт и указатель курса) обычно управляются вакуумом, как страховка от выхода из строя всех (электрических) приборов, поскольку ранние самолеты часто не имели электрических систем, и поскольку есть два легкодоступных источников вакуума на движущемся самолете, двигатель и трубка Вентури. При вакуумноиндукционной плавке применяют электромагнитную индукцию в вакууме.
Поддержание вакуума в конденсаторе важно для эффективной работы паровых турбин. Для этого используется паровой инжектор или водокольцевой насос. Обычный вакуум, поддерживаемый в паровом объёме конденсатора на выхлопном патрубке турбины (еще его называют давление конденсатора турбины), находится в диапазоне от 5 до 15 кПа, в зависимости от типа конденсатора и условий окружающей среды.
Дегазация
Испарение и сублимация в вакууме называется дегазацией. Все материалы, твердые или жидкие, немного парят (происходит газовыделение), и их дегазация необходима когда давление вакуума падает ниже давления их пара. Парение материалов в вакууме имеет такое же эффект как натекание и может ограничить достижимый вакуум. Продукты испарения могут конденсироваться на близлежащих более холодных поверхностях, что может вызвать проблемы, если они покроют оптические приборы или вступят в реакцию с другими материалами. Это вызывает большие трудности при полётах в космосе, где затемненный телескоп или элемент солнечной батареи может сорвать высокозатратную операцию.
Самым распространенным выделяющимся продуктом в вакуумных системах является вода, поглощенная материалами камер. Её количество может быть уменьшено сушкой или прогревом камеры и удалением абсорбирующих материалов. Испаряющаяся вода может конденсироваться в масле пластинчато-роторных насосов и резко уменьшить их рабочую скорость, если не используется газобалластное устройство. Высоковакуумные системы должны быть чистыми, в них не должно оставаться органических веществ, чтобы свести к минимуму газовыделение.
Сверхвысокие вакуумные системы, как правило, отжигаются, желательно под вакуумом, чтобы временно повысить испарение всех материалов и выпарить их. После того, как большая часть испаряющихся материалов выпарена и удалена, система может быть охлаждена, для уменьшения парения материалов и минимизации остаточного газовыделения во время рабочей эксплуатации. Некоторые системы охлаждают существенно ниже комнатной температуры с помощью жидкого азота для полного прекращения остаточного газовыделения и одновременно создания эффекта криогенной откачки системы.
Откачка и атмосферное давление
Газы вообще нельзя вытолкнуть, поэтому вакуум не может быть создан всасыванием. Всасывание может распространить и разбавить вакуум, позволяя высокому давлению вводить в него газы, но, прежде чем всасывание может произойти, необходимо вакуум создать. Самый простой способ создать искусственный вакуум — расширить объем камеры. Например, мышца диафрагмы расширяет грудную полость, что приводит к увеличению объема легких. Это расширение уменьшает давление и создает низкий вакуум, который вскоре заполняется воздухом, нагнетаемым атмосферным давлением.
Чтобы продолжать опустошение камеры бесконечно, не используя постоянно её увеличение, вакуумирующий её отсек может быть закрыт, продут, расширен снова, и так много раз. Это принцип работы насосов с принудительным вытеснением (газопереносных), например, ручной водяной насос. Внутри насоса механизм расширяет небольшую герметичную полость для создания вакуума. Из-за перепада давления часть жидкости из камеры (или колодца, в нашем примере) вталкивается в маленькую полость насоса. Затем полость насоса герметично закрывается от камеры, открывается в атмосферу и сжимается до минимального размера, выталкивая жидкость.
Приведенное выше объяснение представляет собой простое введение в вакуумирование и не является типичным для всего диапазона используемых насосов. Разработаны много вариаций насосов с принудительным вытеснением, и множество конструкций насосов основаны на радикально других принципах. Насосы передачи импульса, которые имеют некоторое сходство с динамическими насосами, используемыми при более высоких давлениях, могут обеспечить намного более высокое качество вакуума, чем насосы с принудительным вытеснением. Газосвязывающие насосы способные захватывать газы в твердом или поглощенном состоянии, работают часто без движущихся частей, без уплотнений и без вибрации. Ни один из этих насосов не является универсальным; каждый тип имеет серьезные ограничения применения. У всех есть трудности с откачкой газов с малой массой молекул, особенно водорода, гелия и неона.
Самое низкое давление, которое может быть достигнуто в системе, кроме устройства насосов, также зависит от многих факторов. Несколько насосов могут быть соединены последовательно, в так называемые ступени, для достижения более высокого вакуума. Выбор уплотнений, геометрии камеры, материалов и процедур откачки — всё будет иметь эффект. В совокупности всё это называют вакуумной техникой. И иногда, итоговое давление — не единственная существенная характеристика. Насосные системы отличаются масляным загрязнением, вибрацией, избирательной откачкой определенных газов, скоростями откачки, прерывистостью эксплуатации, надежностью или устойчивостью к высоким скоростям натекания.
В системах со сверхвысоким вакуумом необходимо учитывать некоторые очень «странные» пути натекания и источники парения. Неприемлемым источником испарений становится способность к водопоглощению алюминия и палладия, приходится учитывать даже адсорбционную способность твердых металлов, таких как нержавеющая сталь или титан. Некоторые масла и смазки будут кипеть при высоком вакууме. Возможно, придется учитывать проницаемость металлических стенок камер, и направление зёрен металлических фланцев должно быть параллельным торцу фланца.
Самые низкие давления, которые в настоящее время достижимы в лабораторных условиях, составляют около 10-13 торр (13 пПа). Однако, давления ниже, чем 5×10-17 торр (6.7 фПа) были косвенно измеряемы криогенной вакуумной системе. Это соответствует ≈100 частиц / см3.
См. также
Применения:
Примечания
- ↑ Chambers, Austin. Modern Vacuum Physics. — Boca Raton : CRC Press, 2004. — ISBN 0-8493-2438-6.
- ↑ Tadokoro, M. (1968). «A Study of the Local Group by Use of the Virial Theorem». Publications of the Astronomical Society of Japan 20. Bibcode: 1968PASJ…20..230T.
- ↑ Родин А. М., Дружинин А. В. Вакуум // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 235—236. — 707 с. — 100 000 экз.
- ↑ Werner S. Weiglhofer. § 4.1 The classical vacuum as reference medium // Introduction to complex mediums for optics and electromagnetics / Werner S. Weiglhofer and Akhlesh Lakhtakia, eds. — SPIE Press, 2003. — P. 28, 34. — ISBN 978-0-8194-4947-4.
- ↑ Tom G. MacKay. Electromagnetic Fields in Linear Bianisotropic Mediums // Progress in Optics, Volume 51 / Emil Wolf. — Elsevier, 2008. — P. 143. — ISBN 978-0-444-52038-8.
- ↑ Физическая энциклопедия, т.5. Стробоскопические приборы — Яркость/ Гл. ред. А. М. Прохоров. Ред.кол.: А. М. Балдин,А. М. Бонч-Бруевич и др. — М.:Большая Российская Энциклопедия,1994, 1998.-760 с.:ил. ISBN 5-85270-101-7 , стр.644
- ↑ Галилей Г. Избранные труды в двух томах. / Составитель У. И. Франкфурт. — Том 2. — М.: Наука, 1964.
- ↑ Schotti H.G. Technica Curiosa. 1664.
- ↑ Horror Vacui? — Raffaello Magiotti (1597—1656) — IMSS.
- ↑ Cornelis De Waard. L’experience barometrique. Ses antecedents et ses explications. Thouars, 1936. P. 181.
- ↑ How to Make an Experimental Geissler Tube, Popular Science monthly, February 1919, Unnumbered page, Scanned by Google Books: https://books.google.com/books?id=7igDAAAAMBAJ&pg=PT3
- ↑ В. П. Борисов (Институт истории естествознания и техники им. С. И. Вавилова РАН.). Изобретение, давшее дорогу открытиям: В 2002 г. исполнилось 400 лет со дня рождения изобретателя вакуумного насоса Отто фон Герике // Вестник Российской академии наук. — 2003. — Т. 73, № 8. — С. 744—748.
- ↑ В. П. Борисов, Изобретение вакуумного насоса и крушение догмы «Боязни Пустоты» // Вопросы истории естествознания и техники, № 4, 2002
- ↑ Landis, Geoffrey Human Exposure to Vacuum. www.geoffreylandis.com (7 August 2007). Проверено 25 марта 2006.
- ↑ Billings, Charles E. Chapter 1) Barometric Pressure // Bioastronautics Data Book / Parker, James F.; West, Vita R.. — Second. — NASA, 1973. — P. 5. — ISBN NASA SP-3006.
- ↑ Webb P. (1968). «The Space Activity Suit: An Elastic Leotard for Extravehicular Activity». Aerospace Medicine 39 (4): 376–383. PMID 4872696.
- ↑ Cooke JP, RW Bancroft (1966). «Some Cardiovascular Responses in Anesthetized Dogs During Repeated Decompressions to a Near-Vacuum». Aerospace Medicine 37 (11): 1148–1152. PMID 5972265.
- ↑ Harding, Richard M. Survival in Space: Medical Problems of Manned Spaceflight. — Routledge, 1989. — ISBN 0-415-00253-2..
- ↑ American Vacuum Society. Glossary. AVS Reference Guide. Проверено 15 марта 2006. Архивировано 15 июня 2013 года.
- ↑ National Physical Laboratory, UK. What do ‘high vacuum’ and ‘low vacuum’ mean? (FAQ – Pressure). Проверено 22 апреля 2012. Архивировано 15 июня 2013 года.
Литература
- Борисов В.П. Вакуум: от натурфилософии до диффузионного насоса. — М.: НПК «Интелвак», 2001.
- Научные основы вакуумной техники. — М., 1964.
- Грошковский Я. Техника высокого вакуума. — М., 1975.
- Основы вакуумной техники. 2-е изд. — М., 1981.
- Розанов Л. И. Вакуумная техника. 2-е изд. — М., 1990.
- L. B. Okun. On the concepts of vacuum and mass and the search for higgs (англ.) // Modern Physics Letters A. — 2012. — Vol. 27. — P. 1230041. — DOI:10.1142/S0217732312300418. — arXiv:1212.1031.
- Крамер Д. и др. Точные решения уравнений Эйнштейна. М.: Мир, 1982. — 416 с.
- Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.
- Паули В. Теория относительности. М.: Наука, 1991
- Гриб А. А. Проблема неинвариантности вакуума в квантовой теории поля. М.: Атомиздат, 1978
wiki.sc
Вакуум — это… Что такое Вакуум?
состояние газа при давлениях значительно ниже атмосферного. Понятие В. применяется обычно к газу, заполняющему ограниченный объём, но нередко его относят и к газу, находящемуся в свободном пространстве, например в космосе. Поведение газа в вакуумных устройствах определяется соотношением между длиной свободного пробега (См. Длина свободного пробега) λ молекул (или атомов) и размером d, характерным для данного прибора или процесса. Такими размерами могут быть, например, расстояние между стенками вакуумного объёма, диаметр вакуумного трубопровода, расстояние между электродами электровакуумного прибора и т.п. В зависимости от соотношения λ и d различают: низкий В. (λ d), cpeдний В. (λ Вакуум d), и высокий В. (λ d).В вакуумных установках и приборах размером d Вакуум 10 см низкому В. соответствует область давлений выше 102н/м2 (1 мм рт. ст.), среднему В. — от 102 до 10-1н/м2 (от 1 до 10-3мм рт. ст.) и высокому В. — ниже 0,1 н/м2 (10-8 мм рт. ст.). Область давлений ниже 10-6н/м2 (10-8мм рт. cm.) называют сверхвысоким В. Однако, например, в порах или каналах диаметром d Вакуум 1 мкм поведение газа соответствует высокому В. при давлениях, начиная с 103н/м2 (десятки мм рт. ст.), а в камерах для имитации космического пространства, размеры которых достигают десятков метров, границей между средним и высоким В. считают давления 10-3н/м2 (10-5мм рт. ст.).
Наиболее высокая степень В., достигаемая существующими методами, соответствует давлениям 10-13—10-14н/м2 (10-15—10-16мм рт. ст.). При этом в 1 см3 объёма остаётся всего несколько десятков молекул. Достигаемая степень разрежения определяется равновесием между скоростью откачки газа и скоростью его поступления в откачиваемый объём. Поступление может происходить за счёт проникновения газа в вакуумную камеру извне через микроскопические отверстия (течи), а также в результате выделения газа, адсорбированного стенками или растворённого в них (см. Адсорбция). Свойства газа в условиях низкого В. определяются частыми столкновениями молекул газа друг с другом, сопровождающимися обменом энергией между ними. Такой газ обладает внутренним трением (см. Вязкость). Его течение подчиняется законам аэродинамики (см. Аэродинамика разреженных газов). Явления переноса (электропроводность, теплопроводность, внутреннее трение, диффузия) в условиях низкого В. характеризуются плавным изменением или постоянством градиента переносимой величины. Например, температура газа в пространстве между «горячей» и «холодной» стенками в низком В. изменяется постепенно. При этом переносимое количество тепла (Теплопроводность) или вещества (Диффузия) не зависит от давления. Если газ находится в двух сообщающихся сосудах при различных температурах, то при равновесии давления в этих сосудах равны. При прохождении тока в низком В. определяющую роль играет ионизация молекул газа (см. Электрический разряд в газе (См. Электрический разряд в газах), Ионизация).В высоком В. свойства газа определяются только столкновениями его молекул со стенками. Столкновения молекул друг с другом происходят редко и играют второстепенную роль. Движение молекул между стенками происходит прямолинейно (молекулярный режим течения газа). Явления переноса характеризуются возникновением скачка градиента переносимой величины на стенках; например, во всём пространстве между горячей и холодной стенками примерно половина молекул имеет скорость, соответствующую температуре холодной стенки, а другая половина — скорость, соответствующую температуре горячей стенки, т. е. средняя температура газа во всём объёме одинакова и отлична от температуры как горячей, так и холодной стенок. Количество переносимого тепла, вещества и т.д. прямо пропорционально давлению газа. Давление газа, находящегося в сообщающихся сосудах, p1 и p2 при различных абсолютных температурах T1 и T2 определяется соотношением:
Свойства газа в среднем В. являются промежуточными между его свойствами в низком и высоком В.
Особенности сверхвысокого В. связаны уже не с соударениями частиц, а с др. процессами на поверхностях твёрдых тел, находящихся в В. Поверхность любого тела всегда покрыта тонким слоем газа, который может быть удалён нагревом (обезгаживание). После этого поверхностные свойства тел резко изменяются: сильно увеличивается коэффициент трения, в ряде случаев становится возможной сварка материалов даже при комнатной температуре и т.д. Удалённый слои газа постепенно восстанавливается в результате адсорбции молекул газа, бомбардирующих поверхность, что сопровождается изменением её поверхностных свойств. Для изменения этих свойств достаточно образования мономолекулярного слоя газа. Время t, необходимое для образования такого слоя в В., обратно пропорционально давлению. При давлении p = 10-4 н/м2 (10-6 мм рт. ст.) t = 1 сек, при др. давлениях время t (сек) может оцениваться по формуле: t = 10-6* р, где р — давление в мм рт. ст. (или по формуле t = 10-4* р), где р — давление в н/м2. Эти формулы справедливы, если каждая молекула газа, ударяющаяся о поверхность, остаётся на ней (так называемый коэффициент захвата равен 1). В ряде случаев коэффициент захвата меньше 1 и тогда время образования мономолекулярного слоя соответственно увеличивается. При р -6 н/м2 (10-8мм рт. ст.) образование мономолекулярного слоя газа происходит за время, превышающее несколько мин. Сверхвысокий В. определяется как такой В., в котором за время наблюдения не происходит существенного изменения свойств поверхности (первоначально свободной от газа) вследствие её взаимодействия с молекулами газа. О получении и применении В. см. Вакуумная техника, об измерении В. — Вакуумметрия.А. М. Родин.
физический, среда, в которой нет частиц вещества или поля. В технике В. называют среду, в которой содержится «очень мало» частиц; чем меньше частиц находится в единице объёма такой среды, тем более высок В. Однако полный В. — среда, в которой совсем нет частиц, вовсе не есть лишённое всяких свойств «ничто». Отсутствие частиц в физической системе не означает, что она «абсолютно пуста» и в ней ничего не происходит.
Современное понятие В. оформилось в рамках квантовой теории поля (См. Квантовая теория поля). В микромире, который описывается квантовой теорией, имеет место Корпускулярно-волновой дуализм: любые частицы (молекулы, атомы, элементарные частицы) обладают некоторыми волновыми свойствами и любым волнам присущи некоторые свойства частиц (корпускул). В квантовой теории поля все частицы, в том числе и «корпускулы» световых волн, фотоны, выступают на одинаковых основаниях — как кванты соответствующих им физических полей: фотон — квант электромагнитного поля; электрон и позитрон — кванты электронно-позитронного поля; мезоны — кванты мезонного, или ядерного, поля и т.д. С каждым квантом связаны присущие частицам физические величины: масса, энергия, количество движения (импульс), электрический заряд, Спин и др. Состояние системы и её физические характеристики полностью определяются числом составляющих её частиц — квантов — и их индивидуальными состояниями. В частности, у любой квантовой системы имеется вакуумное состояние, в котором она вовсе не содержит частиц (квантов). В таком состоянии энергия системы принимает наименьшее из возможных значений, а её заряд, спин и прочие характеризующие систему Квантовые числа равны нулю. Эти факты интуитивно понятны: поскольку в вакуумном состоянии нет материальных носителей физических свойств, то, казалось бы, для такого состояния значения всех физических величин должны равняться нулю. Но в квантовой теории действует принцип неопределённостей (см. Неопределённостей соотношение), согласно которому только часть относящихся к системе физических величин может иметь одновременно точные значения; остальные величины оказываются неопределёнными. (Так, точное задание импульса частицы влечёт за собой полную неопределённость её координаты.) Поэтому во всякой квантовой системе не могут одновременно точно равняться нулю все физические величины.К величинам, которые не могут быть одновременно точно заданы, относятся, например, число фотонов и напряжённость электрического (или магнитного) поля: строгая фиксация числа фотонов приводит к разбросу (флуктуациям) в величине напряжённости электрического поля относительно некоторого среднего значения (и наоборот). Если число фотонов в системе в точности равно нулю (вакуумное состояние электромагнитного поля), то напряжённость электрического поля не имеет определённого значения: поле всё время будет испытывать флуктуации, хотя среднее (наблюдаемое) значение напряжённости будет равно нулю. Таким флуктуациям подвержены и все другие физические поля — электронно-позитронное, мезонное и т.д.
В квантовой теории поля флуктуации интерпретируются как рождение и уничтожение виртуальных частиц (См. Виртуальные частицы) (то есть частиц, которые непрерывно рождаются и сразу же уничтожаются), или виртуальных квантов данного поля. Наличие флуктуаций не сказывается на значениях полного электрического заряда, спина и др. характеристик системы, которые, как уже говорилось, равны нулю в состоянии В. Однако виртуальные частицы точно так же участвуют во взаимодействиях, как и реальные. Например, виртуальный фотон способен породить виртуальную пару электрон-позитрон, аналогично рождению реальным фотоном реальной электрон-позитронной пары (см. Аннигиляция и рождение пар). Благодаря флуктуациям В. приобретает особые свойства, проявляющиеся в наблюдаемых эффектах, и, следовательно, состояние В. обладает всеми правами «настоящих» физических состояний.Рассмотрим систему, состоящую только из одного реального электрона. Реальных фотонов в такой системе нет, но флуктуации фотонного В. (этот термин и означает отсутствие реальных фотонов) приводят к возникновению «облака» виртуальных фотонов возле этого электрона, а вслед за ними — виртуальных пар электрон-позитрон. Такие пары проявляют себя подобно связанным зарядам в диэлектрике: под действием кулоновского поля реального электрона они поляризуются и экранируют (то есть эффективно уменьшают) заряд электрона. По аналогии с диэлектриком, эффект экранирования заряда виртуальными частицами называется поляризацией вакуума.
В результате поляризации В электрическое поле заряженной частицы на малых расстояниях от неё слегка отличается от кулоновского. Из-за этого, например, смещаются энергетические уровни ближайших к ядру электронов в атоме (см. Сдвиг уровней). Поляризация В. влияет и на поведение заряженных частиц в магнитном поле. Характеризующий это поведение магнитный момент частицы в итоге отличается от своего «нормального» значения, определяемого массой и спином частицы (см. Магнетон). Поправки как к уровням энергии, так и к магнитному моменту, составляют доли процента, и теоретически вычисленные значения с очень высокой точностью согласуются с измеренными на опыте.В. П. Павлов.
dic.academic.ru
Добавить комментарий