Вода плюс калий: K + H2O = ? уравнение реакции
Ацетат калия, структурная формула, химические свойства
1
H
ВодородВодород
1,008
1s1
2,2
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
ГелийГелий
4,0026
1s2
Бесцветный газ
t°кип=-269°C
3
Li
ЛитийЛитий
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
БериллийБериллий
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
БорБор
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
УглеродУглерод
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
7
N
АзотАзот
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
КислородКислород
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
ФторФтор
18,998
2s2 2p5
4,0
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
НеонНеон
20,180
2s2 2p6
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
НатрийНатрий
22,990
3s1
0,93
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
МагнийМагний
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
АлюминийАлюминий
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
КремнийКремний
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
ФосфорФосфор
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
СераСера
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
ХлорХлор
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
АргонАргон
39,948
3s2 3p6
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
КалийКалий
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
КальцийКальций
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
СкандийСкандий
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
ТитанТитан
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
ВанадийВанадий
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
ХромХром
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
МарганецМарганец
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
ЖелезоЖелезо
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
КобальтКобальт
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
НикельНикель
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
МедьМедь
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
ЦинкЦинк
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
ГаллийГаллий
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
ГерманийГерманий
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
МышьякМышьяк
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
СеленСелен
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
БромБром
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
КриптонКриптон
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
РубидийРубидий
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
СтронцийСтронций
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
ИттрийИттрий
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
ЦирконийЦирконий
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
НиобийНиобий
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
МолибденМолибден
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
ТехнецийТехнеций
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
РутенийРутений
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
РодийРодий
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
ПалладийПалладий
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
СереброСеребро
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
КадмийКадмий
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
ИндийИндий
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
ОловоОлово
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
СурьмаСурьма
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
ТеллурТеллур
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
ИодИод
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
КсенонКсенон
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
ЦезийЦезий
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
БарийБарий
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
ЛантанЛантан
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
ЦерийЦерий
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
ПразеодимПразеодим
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
НеодимНеодим
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
ПрометийПрометий
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
СамарийСамарий
150,36
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
ЕвропийЕвропий
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
ГадолинийГадолиний
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
ТербийТербий
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
ДиспрозийДиспрозий
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
ГольмийГольмий
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
ЭрбийЭрбий
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
ТулийТулий
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
ИттербийИттербий
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
ЛютецийЛютеций
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
ГафнийГафний
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
ТанталТантал
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
ВольфрамВольфрам
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
РенийРений
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
ОсмийОсмий
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
ИридийИридий
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
ПлатинаПлатина
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
ЗолотоЗолото
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
РтутьРтуть
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
ТаллийТаллий
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
СвинецСвинец
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
ВисмутВисмут
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
ПолонийПолоний
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
АстатАстат
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
РадонРадон
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
ФранцийФранций
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
РадийРадий
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
АктинийАктиний
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
ТорийТорий
232,04
f-элемент
Серый мягкий металл
91
Pa
ПротактинийПротактиний
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
УранУран
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
НептунийНептуний
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
ПлутонийПлутоний
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
АмерицийАмериций
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
КюрийКюрий
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
БерклийБерклий
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
КалифорнийКалифорний
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
ЭйнштейнийЭйнштейний
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
ФермийФермий
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
МенделевийМенделевий
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
НобелийНобелий
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
ЛоуренсийЛоуренсий
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
РезерфордийРезерфордий
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
ДубнийДубний
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
СиборгийСиборгий
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
БорийБорий
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
ХассийХассий
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
МейтнерийМейтнерий
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
ДармштадтийДармштадтий
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
Николинская вода :: Калий — для чего он нам необходим?
Для чего нам необходим калий и почему в Николинской воде его так много?
Начиная статью про калий, нужно обязательно коснуться вопроса употребления дистиллированной воды. Немножко терпения, и через несколько абзацев вы поймете, почему, и как одно связано с другим. Наверно, все слышали о том, что дистиллированная вода вредна, а в больших дозах может быть и смертельной. Об этом говорит официальная медицина, которая прямо запрещает пить дистиллированную воду. Но это только одна сторона вопроса. Другая сторона состоит в том, что существуют убедительные доказательства пользы дистиллированной воды.
Известный американский деятель альтернативной медицины, натуропат, пропагандист здорового образа жизни Поль Брэгг прожил 95 лет, и при этом употреблял только дистиллированную воду. При голодании Брэгг также рекомендовал употреблять дистиллированную воду, так как очистка организма при различных сроках голодания может быть успешной только при употреблении дистиллированной воды. А. Лодзинский утверждает, что «чем меньше минерализация воды, тем легче она проникает в ткани через слизистые оболочки». Мягкие и с низким солесодержанием воды легко усваиваются организмом и легко выводят из него все так называемые шлаки.
И если мы видим, что Брэгг всю жизнь пил только дистиллированную воду и она не навредила ему, а, наоборот, способствовала повышению уровня его здоровья, то должны признать, что при каких-то условиях эту воду можно пить в течение всей жизни.
Какие же это условия? Дистиллированная вода легко вымывает из организма не только все шлаки, но и такие элементы, как калий и натрий. И если с натрием у нас нет проблем, мы его потребляем значительно больше, чем нам необходимо в составе поваренной соли, то с калием не все обстоит благополучно. Лишь некоторые продукты относительно богаты калием, поэтому мы чаще всего испытываем дефицит калия. И в питьевой воде его практически нет. И это большой недостаток всех природных вод. Чего только нет в этих водах, и все это чаще всего не нужно организму, а вот необходимого для него калия в них или вовсе нет, или имеется очень мало. Вот и говорите после этого, что самая хорошая вода — это природная.
Для нормального обмена веществ соотношение калия и натрия в организме должно быть один к двум. В глубокой древности, когда наши предки не пользовались поваренной солью, соотношение калия и натрия в их пищевом рационе было обусловлено только естественным содержанием этих элементов в пищевых продуктах, в которых в умеренных количествах были оба эти элемента. В современных же условиях, когда человек потребляет много поваренной соли и не стремится от этого отказываться, соотношение между калием и натрием становится далеким от оптимального, и организм постоянно испытывает калиевый голод. А если мы начнем употреблять в качестве питьевой воды дистиллированную воду, то проблема с калием лишь возрастет. Именно по этой причине (чтобы уменьшить вымывание калия из организма) наши медики и не рекомендуют пользоваться дистиллированной водой в качестве питьевой.
В организме взрослого человека содержится около 140 г калия — 98,5% его находится внутри клеток, а 1,5% вне клеток. Это важнейший внутриклеточный элемент, активатор функций ряда ферментов. Он необходим для деятельности мышц, в том числе миокарда, работы нейроэндокринной системы.
Пониженное содержание калия в организме обычно приводит к астении (психическому и физическому истощению, быстрой утомляемости), нарушению функции почек и истощению функций надпочечников, риску нарушения обменных процессов и проводимости в миокарде, пролапсу митрального клапана, нарушению регуляции артериального давления, развитию эрозивных процессов в слизистых оболочках (язвенная болезнь, эрозивный гастрит, эрозия шейки матки).
Дефицит калия снижает работоспособность, замедляет заживление ран, ведет к нарушению нервно-мышечной проводимости.
Калий оказывает влияние на коллоидное состояние тканей, уменьшая гидратацию тканевых белков, способствуя выведению жидкости из организма.
Велика роль калия и в жизнедеятельности клеток. Он повышает их энергетический баланс. Последними работами американских ученых установлено, что добавка калия в рацион питания космонавтов значительно улучшает обмен веществ в организме.
Калий в некоторых физиологических процессах выступает как антагонист натрия (например, калий-натриевый насос нейрона), поэтому дополнительное потребление калия приводит к выведению натрия из организма. Питьевая вода с повышенным содержанием калия способствует увеличению диуреза и ускорению выведения натрия, что особенно необходимо при почечной недостаточности.
Калий играет основную роль в регуляции секреции соляной кислоты и выделяется в желудок вместе с ней. Избыток его в желудке может нарушить осмотическое давление и этим понизить секрецию соляной кислоты.
Кстати, повышенная кислотность желудочного сока (что является причиной изжоги) многими больными устраняется щелочными минеральными водами, а порой и просто содой (гидрокарбонатом натрия). Но это всего лишь сиюминутное решение проблемы. При таком лечении можно годами принимать минеральные воды, но ничего не изменится, а кроме того, все щелочные воды вредят в целом нашему здоровью. Исправить эту неприятность (повышенную кислотность) можно относительно быстро (в течение 2—3 недель) повышенным потреблением калия. Это может быть питьевая вода, содержащая калий, или такие продукты, как изюм или курага (50 — 100 г в сутки).
Ионы калия поддерживают автоматизм сердечной деятельности, и при их недостатке наблюдаются боли в сердце.
Как было сказано выше, длительное пользование дистиллированной водой в качестве питьевой (больше одного месяца) приводит к значительному вымыванию калия из организма. И это, по-видимому, единственный недостаток дистиллированной воды как питьевой. Но если мы будем восполнять потери калия, то сможем пожизненно пользоваться дистиллированной водой как питьевой. Это нам продемонстрировал и Поль Брэгг. Он каждый день обязательно съедал по 100 г изюма или кураги, богатых калием. Таким образом, он постоянно восполнял потери калия в организме. Подобным же образом поступают и долгожители. Вода с очень низким содержанием кальция в районах долгожительства по своему действию на организм почти ничем не отличается от дистиллированной, а поэтому необходимо восполнять потери калия.
На Кавказе роль поставщика калия в основном выполняет фасоль, вот почему столь излюбленными там являются блюда из фасоли. А летом какую-то часть калия поставляют травы, во множестве используемые в пищу на Кавказе.
В Пакистане, где проживают долгожители хунза и где очень мягкая вода, поставщиком калия являются абрикосы, которые в большом количестве в высушенном виде заготавливаются на зиму. Постоянная потребность в абрикосах отражена и в необычной, на наш взгляд, поговорке этого народа: «Женщина хунза никогда не пойдет за своим милым туда, где не растут абрикосы». Но мы теперь догадываемся, в чем здесь суть. Эта женщина ничего, конечно, не знает об особенностях своей питьевой воды, которая интенсивно выводит калий из организма, но опыт — великий учитель, и он говорит ей, что без абрикосов невозможно оставаться здоровой, а поэтому она полагает, что и в других местах также нельзя будет прожить без них.
У нас поставщиком калия может быть фасоль и картофель. Но на нашей водопроводной воде ничто, пожалуй, в том числе и калий, не вымывается из организма. А поэтому мы спокойно обходимся и без кураги, и без изюма, а Поль Брэгг не мог без них обойтись. Больше всего калия содержится, конечно же, в изюме, кураге и гранате.
Итак, пить дистиллированную воду можно для очистки организма от «шлаков» и насыщения клеток водой — но при условии правильного подбора диеты для восполнения вымываемого этой водой калия. А употребление питьевой воды «Николинской» позволяет не только очищать организм от шлаков за счет её мягкости, но и вовсе забыть о необходимости восполнения калия, так как «Николинская» содержит оптимальное количество калия, рассчитанное Н.Г.Друзьяком (80 – 100 мг/л), для поддержания его в организме на нужном уровне.
Калий (K) и вода
- Дом
- Периодическая таблица
- Элементы и вода
- Калий в воде (K + h3O)
Морская вода содержит около 400 ppm калия. Он имеет тенденцию оседать и, следовательно, в основном попадает в осадок. Реки обычно содержат около 2-3 частей на миллион калия. Это различие в основном обусловлено большой концентрацией калия в океанических базальтах. Богатый кальцием гранит содержит до 2,5% калия. В воде этот элемент в основном присутствует в виде К9.0015 + (водн.) ионы. 40 K — распространенный в природе радиоактивный изотоп калия. Морская вода содержит естественную концентрацию около 4,5 . 10 -5 г/л. Калий быстро и интенсивно реагирует с водой с образованием бесцветного основного раствора гидроксида калия и газообразного водорода по следующему механизму реакции: + Н 2 (g) Это экзотермическая реакция, и калий нагревается до такой степени, что горит фиолетовым пламенем. Кроме того, выделяющийся в ходе реакции водород сильно реагирует с кислородом и воспламеняется. Калий реагирует с водой медленнее, чем рубидий, который в периодической таблице стоит под калием. Он реагирует с водой быстрее, чем натрий, который находится выше в периодической таблице. Калий не растворяется в воде, но реагирует с водой, как было объяснено ранее. Соединения калия могут быть водорастворимыми. Примерами являются дихромат калия с растворимостью в воде 115 г/л, перманганат калия с растворимостью в воде 76 г/л, йодид калия с растворимостью в воде 92 г/л и йодид калия, из которых даже до 1480 г может растворить в одном литре воды. Калий содержится в различных минералах, из которых он может быть растворен в результате процессов выветривания. Примерами являются полевые шпаты (ортоклаз и микроклин), которые, однако, не имеют большого значения для получения калийных соединений, и наиболее благоприятные для производственных целей хлорсодержащие минералы карналит и сильвит. Некоторые глинистые минералы содержат калий. Он попадает в морскую воду в результате естественных процессов, где в основном оседает в отложениях. Калий необходим практически любому организму, кроме ряда бактерий, поскольку он играет важную роль в функционировании нервной системы. Калий необходим нам с пищей, и мы потребляем около 1-6 г в день при потребности 2-3,5 г в день. Общее количество калия в организме человека составляет от 110 до 140 г и в основном зависит от мышечной массы. Мышцы содержат больше всего калия после эритроцитов и ткани мозга. Калий может быть удален из воды с помощью обратного осмоса. Литература и другие элементы и их взаимодействие с водой |
Еще из «Элементы и вода»
Алюминий в воде (AL + h3O)
Аргон в воде (Ar + h3O)
6
вода (As + h3O)Бор в воде (B + h3O)
Кальций в воде (Ca + h3O)
Хром в воде (Cr + h3O)
Гелий в воде (He + h3O)
Йод в вода (I + h3O)
Железо в воде (Fe + h3O)
Свинец в воде (Pb + h3O)
Литий в воде (Li + h3O)
Магний в воде (Mg + h3O)
Никель в воде (Ni + h3O)
Азот в воде (N + h3O)
Кислород в воде (O2 + h3O)
Кремний в воде (Si + h3O)
Серебро в воде (Ag + h3O)
Натрий в воде (Na + h3O)
Стронций в воде (Sr + h3O)
Олово в воде (SN + h3O)
Титан в воде (Ti + h3O)
Цинк в воде (Zn + h3O)
Arsenic in water
فرمول واکنش پتاسیم هیدروکسید با آب
واکنش پتاسیم هیدروکسید یا پتاس با آب را نمی توانیم به عنوان یک واکنش شیمیایی نام گذاری کنیم؛ زیرا در این واکنش محصول متفاوتی تولید نمی شود، تغییرات فیزیکی و شیمیایی خاصی نداریم و فقط تفکیک اجزا سازنده پتاسیم هیدروکسید به آنیون و کاتیون آن در این واکنش وجود دارد. Бесплатно فرمول واکنش پتاسیم هیدروکسید با آب ساختاری ساده دارد و آنچه در این واکنش پیچیده است، نحوه انجام این واکنش است که موضوع را سخت تر جلوه می دهد.البته واکنش پتاسیم هیدروکسید با آب واکنشی ریسک پذیر است که باید در هنگام انجام این واکنش کاملا مراقب بود.
ساختار فرمول
اکسید پتاسیم + آب، هیدروکسید پتاسیم ۪م ۪م ۪م ۪م اکسید پتاسیم یک ترکیب یونی است. پتاسیم دارای بار K+و اکسیژن دارای بارO2−است. برای تعادل یک یون اکسید با فرمول K2O به 2 یون پتاسیم نیاز داریم. هیدروکسید پتاسیم یک ترکیب یونی است. پتاسیم دارای بار K+و هیدروکسید دارای OH-است. برای تعادل یک یون هیدروکسید با فرمول KOH به 1 یون پتاسیم نیاز داریم. K2O+ h3O→KOH
برای تعادل معادله ضریب 2 را در مقابل هیدروکسید ؾتهاسیم مممممممممممممممممممم مقادلم مقابل را در مقابل
K2O + h3O → 2KOH
واکنش “شیمیایی” که هنگام حل شدن گلوله های هیدروکسید پتاسیمKOH))در آب اتفاق می افتد ، حلال نامیده می شود.
KOH به طور کامل در آب به یونهای سازنده آن K+و OH-جدا می شود. سپس هر یک از این یونها کاملاً حل شده (یعنی توسط مولکولهای آب احاطه می شوند) تا بارهХ. این واکنش حلال از آنجا که انرژی تبلور از آنجا که انرژی تبلور از آنجا که انرژی تبلور از آنجا که انرژی تبلور بلورهای koh در حین حل شدن آزاد می شود ، دреть حین حل شدن آزاد می شود ، درما ان ادن آزاد می شود ، گرمازا است (گرماправ می ش нибудь ، گреть (گرماправ می. به трите دلیل است که وقتی koh با مقدار محدودی آب مخلوط شود ، محلول می توان пожало گرم (بسیار گرم) شود. هنگامی که گرما پراکنده شد ، آنچه که باقی می ماند یک محلول KOH است ، با یونهای K+و یونهای OH-کاملاً جدا شده و هیدراته می شوند (یعنی توسط مولکولهای h3O حل شده). فلز پتاسیم خیلی سریع با آب واکنش می دهد و یک محلول پایه بی رنگ از هیدروکسید پتاسیم(KOH)و گاز هیدروژن((h3تشکیل می دهد. واکنش حتی زمانی که محلول پایه شود ادامه می یابد. محلول حاصل به دلیل محلول هیدروکسید،پایه ای است. واکنش گرمازا است. پتاسیم بسیار نرم است و به راحتی برش می خورد. سطح حاصل روشن و براق است. با این حال ، این سطح به دلیل واکنش با اکسیژن و رطوبت هوا به زودی لکه دار می شود. اگر پتاسیم در هوا بسوزد ، نتیجه آن عمدتا تشکیل سوپراکسید پتاسیم نارنجی ، KO2 است. اکسید پتاسیم یک ترکیب یونی است. پتاسیم دارای بار K+ و اکسیژن دارای بار O2− است. برای تعادل یک یون اکسید با فرمول K2O به 2 یون پتاسیم نیاز داریم. هیدروکسید پتاسیم یک ترکیب یونی است. پتاسیم دارای بار k+ و هیدروکسید دارای oh- است. برای تعادل دونای oh- است. برای تعادل یکون است. برای تعادل یکprise یون трите σ реть با بملمول koh به 1 هن پمید با ا Щед بесть بن بесть بن بесть بن بесть بم Ch 1 ن ان ان ان ان ان بесть ام Вед اsøt.0026
انجام واکنش میان پتاسیم هیدروکسید و آب
واکنش “شیمیایی” که هنگام حل شدن گلوله های هیدروکسید پتاسیم KOH))در آب اتفاق می افتد ، حلال نامیده می شود.
KOH به طور کامل در آب به یونهای سازنده آن K+و OH- جدا می شود. سپس هر یک از این یونها کاملاً حل شده (یعنی توسط مولکولهای آب احاطه می شوند) تا بارهХ. این واکنش حلال از آنجا که انرژی تبلور از آنجا که انرژی تبلور از آنجا که انرژی تبلور از آنجا که انرژی تبلور بلورهای koh در حین حل شدن آزاد می شود ، دреть حین حل شدن آزاد می شود ، درما ان ادن آزاد می شود ، گرمازا است (گرماправ می ش нибудь ، گреть (گرماправ می. به трите دلیل است که وقتی koh با مقدار محدودی آب مخلوط شود ، محلول می توان пожало گرم (بسیار گرم) شود. هنگامی که گرما پراکنده شد ، آنچه که باقی می ماند یک محلول KOH است ، با یونهای K+و یونهای OH-کاملاً جدا شده و هیدراته می شوند (یعنی توسط مولکولهای h3O حل شده).
هیدروکسید پتاسیم یک ماده قلیایی قوی است به به طور کامل در آt انحلال در آب گرما ایجاد می کند ، объективный بعلاوه می توانید معادله را به صورت زیر بنویسید.
KOH +H3O——————-> k +(aq) +OH- (aq)
از آنجا که این یونها توسط H3O حل می شوند زیرانها трите H3O حل می شوند زیرانها трите H3O حل می شوند زیرانها трите H3O دل می شوند زیرانها трите H3O دل می شوند زیرانها трите H3O دل می شوند زیرانها трите H3O دل می?
تنها فرایندی که به واکنش نزدیک می شود ، جداسازی KOH جامد به ینهت ا .
KOH (S) → K + (aq) + OH- (aq)
یون پتاسیم توسط کره ای از شش مولکول آt هیدروژنی مولکول های آب می شوند.
واکنش از دید کاتیون و آنیون
این واکنش به سادگی شروع می شون . کاتیون پتاسیم از آنیون هیدروکسیل جدا می شود. یک مولکول آب با تشکیل یک جفت یونی جدا شده از حلال ، با یک مولکول آب که بین کاتیون پتاسیم(K +)و آنیون هیدروکسیل((OH_ قرار دارد ، در این تفکیک کمک می کند. اگر هوا وجود داشته باشد ، ممکن است کربنات ها تشکیل شوند. واکنش برگشت پذیر است و وقتی هیدروکسید پتاسیم جامد از محلول رسوب کند ، احتمالاً مجموعه متفاوتی از گروه هیدروکسیل اکسیژن و هیدروژن وجود دارد.
نکته ایمنی
این واکنش با اینکه در نگه اول واکنشی بسیار بی خطر و ایمن جلوه می کند، در صورت کوچکترین سهل انگاری فاجعه ای را به بار می آورد. این واکنش میان آب و پتاسیم هیدстить میان آب و پتاسیم هیدروکسید باعث ایجاد احتراق نیز می شود و گرمای لازم برای اد اشتعال رمای لازم برای اد اشتعال رای لازم برای اد اشتعال رای میمی برای اد اشتعال رای میمی برای اد اشتعال رای م بر тит بر тит اэйтивный اشتعال ر رای ب несостоятельный. پس این واکنش در عین ساده بودن و تولید نکردن هر گونه ماده سمی یا بخارات سمی می تواند خطرناک باشد.درست است که این واکنش تولید محصولات خطرناک و سمی را به همراه ندارد ولی فرآیند این واکنش می تواند ایجاد خطر کند؛ البته محصولات خطر ساز را می توان بعد از تولید آنها کنترل کرد ولی فرآیند های شیمیایی خطر ساز را باید حین انجام فرآیند کنترل کرد.
الکترولیت فرمول شیمیایی
در حال حاضر ، سیستم های هوافضا از فناوری های مبتنی بر دو الکترولیت استفاده می کنند: یک الکترولیت مایع قلیایی که از محلول هیدروکسید پتاسیم و آب تشکیل شده و یک الکترولیت جامد ساخته شده از یونومر که هسته سیستم غشای تبادل پروتون را تشکیل می دهد. فرآیند قلیایی محلول 30٪ هیدروکسید پتاسیم در آب باعث ایجاد حداکثر هدایت به عنوان الکترولیت می شود. هنگامی که در یک ظرف قرار دارد و تحت جریان قرار می گیرد ، واکنش های زیر ادامه می یابد:
یونهای هیدروکسیل منفی به آند مثبت مهاجرت کرده و الکترونها را آزاد می کنند و باعث تولید اکسیژن و تشکیل آب می شوند: OH– + 4e– → 2h3O + O2]4
در کاتد منفی ، مولکول های آب شکسته می شوند و یون های هیدروکسیل منفی تشکیل می دهند و هیدروژن آزاد می کنند: h3O + 2e– → 2OH– + h3]2
سیستم الكترون ساخت روسیه كه در داخل میر استفاده می شود و ایستگاه فضایی بین المللی به روند قلیایی متكی است.
فرآیند غشای تبادل پروتون در این فرآیند ، الکترولیت جامد یونومری است که به عنوان غشایی نیمه نفوذ پذیر عمل می کند. در غشای تبادل پروتون ، اجازه هدایت پروتون ، اجازه هدایت پدروتن ، اجازه هدایت هیدرو которым ، اجازه هدایت هیدروژвостивный ، اجازه هدایت هیدروژن ، اجازه هدایت هیدروژن ، اجازه هدایت هیدروژن ، اجازه هدایت هیدروژن ، اجازه بخشیت هیدروژن یونی به عنوان بخشی از م مدار ماند باتری را می دهد. از آنجا که یونوم در برابر گازهای واکنش دهنده مانند هیدروژن مولکولی و اکسیژن نفوذ ناپذیر است ، گازها از یکدیگر جدا می شوند که از فواید و مضرات پتاسیم هیدروکسید است.
چه نوع ماده ای محلول هیدروکسید پتاسیم را خنثی می کند؟
ماده اسیدی محلول هیدروکسید پتاسیم را خنثی می کند.
هیدروکسید پتاسیم یک پایه قوی است. در محلول آبی به هیدروکسید و کاتیون پتاسیم تجزیه می شود. یک اسید قوی توانایی خنثی کردن آن را به آب و نمک دارد. محصولات تشکیل شده یک نمک پتاسیم و آب خواهد بود. نمک ممکن است در آن نمک محلول باشد یا نباشد. این نوع واکنش خنثی سازی نامیده می شود. شاخص مورد استفاده فنل فتالئین است.
.
واکنش بین KOH و CO2 چیست؟
واکنش بین KOH و CO2 منجر به تشکیل KHCO3 می شود. محصولات حاصل از واکنش بین KOH و CO2 به نسبت واکنش دهنده های موجود بستددی داد. اگر فقط یک مول KOH و یک مول CO2 وجود دارد، پس محصول واکنش بی کربنات پتاسیم ((KHCO3 است.
KOH + CO2 → KHCO3
اگر KOH در مقادیر بیشتر از یک مول وجود داشته باشد. واکنش به صورت زیر است.
KHCO3 + KOH → K2CO3 + h3O0026
اسیدهای دی پروتیک میتوانند پروتونهای خود را در دو مرحله متوالی آزاد کنند که در هنگام واکنش با قلیاییهای تک باز مانند KOH منجر به تولید دو نمک جداگانه میشود.
Добавить комментарий