Вход в личный кабинет | Регистрация
Избранное (0) Список сравнения (0)
Ваши покупки:
0 товаров на 0 Р
Итого: 0 Р Купить

Что является углеводами – Углеводы — что это? Простые и сложные углеводы в продуктах

Содержание

Углеводы — Википедия

Углево́ды — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Сахара́  — другое название низкомолекулярных углеводов: моносахаридов, дисахаридов и олигосахаридов.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных

[1].

Классификация

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы — дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.

Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от др.-греч. μόνος ‘единственный’, лат. saccharum ‘сахар’ и суффикса -ид) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется

альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C6H12O6) — структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].

Дисахариды

Дисахари́ды (от др.-греч. δίς ‘два’, лат. saccharum ‘сахар’ и суффикса -ид) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных

[3].

Олигосахариды

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2—10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее

[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].

Полисахариды

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков

[4].

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения[2].

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C6H10O5

)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C
6
H10O5)p, а при полном гидролизе — глюкоза[4].

Структура гликогена

Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 10

5—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу

[2].

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2].

Пространственная изомерия

Слева D-глицеральдегид, справа L-глицеральдегид.

Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].

Биологическая роль

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

Биосинтез

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Cx(h3O)y+xO2→xCO2+yh3O, ΔH<0.001{\displaystyle {\mathsf {C_{x}(H_{2}O)_{y}+xO_{2}\rightarrow xCO_{2}+yH_{2}O,\ \Delta H<0.001}}}

В зелёных листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2+yh3O→Cx(h3O)y+xO2{\displaystyle {\mathsf {xCO_{2}+yH_{2}O\rightarrow C_{x}(H_{2}O)_{y}+xO_{2}}}}

Обмен

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Важнейшие источники

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов

Примечания

  1. 1 2 3 4 Н. А. Абакумова, Н. Н. Быкова. 9. Углеводы // Органическая химия и основы биохимии. Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7.
  2. 1 2 3 4 5 6 7 8 9 10 11 Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
  3. 1 2 3 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 234—235. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8.
  4. 1 2 3 4 5 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 235—238. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8.
  5. Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия: Учебник / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 226—276. — 528 с. — 100 000 экз. — ISBN 5-225-01515-8.
  6. 1 2 А. Я. Николаев. 9. Обмен и функции углеводов // Биологическая химия. — М.: Медицинское информационное агентство, 2004. — ISBN 5-89481-219-4.

Ссылки

Общие:
Геометрия
Моносахариды
Диозы
Триозы
Тетрозы
Пентозы
ГексозаКетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы
>7
Мультисахариды
Производные углеводов

wikipedia.green

Углеводы — это… Что такое Углеводы?

Углево́ды (сахара, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].

Простые и сложные

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (дисахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием моносахаридов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов), а в процессе гидролитического расщепления образуют сотни и тысячи молекул моносахаридов[2].

Моносахариды

Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от греческого monos — единственный, sacchar — сахар) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза, C6H12O6) — шестиатомный сахар (гексоза), структурная единица (мономер) многих полисахаридов (полимеров) — дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].

Дисахариды

Дисахари́ды (от di — два, sacchar — сахар) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединённы друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных[3].

Олигосахариды

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2 — 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].

Полисахариды

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения[2].

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].

Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозиюными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот спосбны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2].

Пространственная изомерия

Слева D-глицеральдегид, справа L-глицеральдегид.

Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].

Биологическая роль

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

Биосинтез

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Cx(H2O)y + xO2 → xCO2 + yH2O + энергия.

В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2 + yH2O → Cx(H2O)y + xO2

Обмен

Основная статья: Углеводный обмен

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Важнейшие источники

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов

Примечания

  1. 1 2 3 4 Н. А. АБАКУМОВА, Н. Н. БЫКОВА. 9. Углеводы // Органическая химия и основы биохимии. Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
  3. 1 2 3 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 234—235. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8
  4. 1 2 3 4 5 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 235—238. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8
  5. Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия: Учебник / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 226—276. — 528 с. — 100 000 экз. — ISBN 5-225-01515-8
  6. 1 2 А. Я. Николаев. 9. Обмен и функции углеводов // Биологическая химия. — М.: Медицинское информационное агентство, 2004. — ISBN 5-89481-219-4

Ссылки

  • Углеводы  (рус.). — строение и химические свойства.(недоступная ссылка — история) Проверено 1 июня 2009.
  Углеводы
Общие:Альдозы · Кетозы · Фуранозы · Пиранозы
ГеометрияАномеры · Мутаротация · Проекция Хоуорса
Моносахариды
ДиозыАльдодиоза (Гликольальдегид)
ТриозыКетотриоза (Дигидроксиацетон) · Альдотриоза (Глицеральдегид)
ТетрозыКетотетроза (Эритрулоза) · Альтотетрозы (Эритроза, Треоза)
ПентозыКетопентозы (Рибулоза, Ксилулоза)

Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза)

Дезоксисахариды (Дезоксирибоза)
ГексозаКетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
ГептозыКетогептозы (Седогептулоза, Манногептулоза)
>7Октозы · Нанозы (Нейраминовая кислота)
Мультисахариды
Производные углеводов
Плазмозамещающие и перфузионные растворы — АТХ код: B05

 

B05A
Препараты крови
B05B
Растворы для в/в введения
B05C
Ирригационные растворы
B05D
Растворы для перитонеального диализа
B05X
Добавки к растворам для в/в введения
B05Z

dic.academic.ru

Углеводы это что такое и в чем содержатся

Углеводы – это органические вещества, которые входят в состав тканей человеческого и животного организма и способствуют выработке энергии для полноценной работы всех органов. Они делятся на моносахариды, олигосахариды, полисахариды. Являются неотъемлемыми компонентами тканей и клеток всех живых организмов и выполняют важные функции для их жизнедеятельности.

Почему углеводы так важны? Учеными доказано, что употребление достаточного количества веществ способствует быстроте реакции, стабильному бесперебойному функционированию мозговой деятельности. Это незаменимый источник энергии для людей, ведущих активный образ жизни.

Если вы придерживаетесь правильного питания, то соблюдаете суточную норму белков, жиров и углеводов. Выясним, как это эффективнее сделать и зачем это необходимо для здоровья. В последние годы диетологи нивелируют пользу углеводов, призывая к низкоуглеводным и белковым диетам для похудения. Но какие проблемы стоят за отказом от употребления углеводов? И какие приносят максимальную пользу? Давайте выясним особенности и определим, какую пищу следует оставить в рационе, а от какой отказаться.

Содержание статьи

Функции углеводов

Углеводы – необходимый компонент для выработки энергии в организме любого живого существа. Но кроме этого, они выполняют целый ряд полезных функций, которые улучшают функции жизнедеятельности.

  • Структурная и опорная. Вещества способствуют построению клеток и тканей всех живых существ и даже растений.
  • Запасающая. Благодаря углеводам в органах удерживаются питательные компоненты, которые без них быстро выводятся и не приносят пользу.
  • Защитная. Оберегает от неблагоприятных воздействий факторов внешней и внутренней среды.
  • Пластическая. Углеводы участвуют в построении АТФ, ДНК и РНК, потому что входят в состав сложных молекул, например, пентозы.
  • Регулирующая. Углеводы активируют процессы пищеварения в желудочно-кишечном тракте.
  • Антикоагулирующая. Воздействуют на свертываемость крови и эффективны в борьбе с опухолями.
  • Осмотическая. Компоненты принимают участие в контроле осмотического давления.

Вместе с углеводами поступает много полезных веществ: крахмал, глюкоза, гепарин, фруктоза, дезоксирибоза и хитин. Но следует соблюдать уровень поступаемых углеводов, потому что при избыточном количестве они накапливаются в мечении и мышцах в виде гликогена.

Обратите внимание на то, что окисление 1 г. веществ способствует выделению 20 кДж чистой энергии, поэтому организм человека усиленно работает на протяжении целого дня. Если ограничить количество поступившего вещества, иммунитет ослабится, и сил станет намного меньше.

Важно! При дефиците углеводов самочувствие человека значительно ухудшается. Замедляется обмен веществ, нарушается работа сердечно-сосудистой системы, ухудшается состояние нервной системы.

Обмен углеводов состоит из нескольких этапов. Сначала они расщепляются в ЖКТ до состояния моносахаридов. Затем всасываются в кровеносное русло. Синтезируются и распадаются в тканях, расщепляют сахар и превращаются в гескоз. Завершающая стадия углеводного обмена – аэробное окисление гликолиза.

Мнение эксперта

Егорова Наталья Сергеевна
Врач-диетолог, г. Нижний Новгород

Да, углеводы являются неотъемлемым компонентом клеток человеческого организма, а также играют незаменимую роль в метаболизме. Но самая главная их функция — это ежедневное обеспечение энергией внутренних органов, мышечной ткани и нервных клеток. Отмечу, что головной мозг и нервная система «питаются» исключительно за счет углеводов, поэтому их нехватка критична для людей, чья работа связана с активной умственной деятельностью.

Я крайне негативно отношусь к диетам, которые полностью исключают или значительно ограничивают употребление углеводов. Ведь в рационе здорового человека должны в нормальных количествах присутствовать все необходимые нутриенты, клетчатка, витамины и минералы.

Но отмечу, что не все углеводы одинаково полезны. Если говорить о «быстрых» углеводах, которые содержатся в белом хлебе, сладостях и сдобной выпечке, то они являются довольно «сомнительным» источником энергии. Они откладываются в организме в виде жировых отложений, способствуя быстрому набору веса.

Так что употреблять углеводы нужно с умом, отдавая предпочтение тем, которые имеют низкий гликемический индекс (ГИ).

Вред и польза углеводов

Чтобы правильно составить свой рацион питания, нужно сначала убедиться в пользе пищи, которая поступает в организм.

Видео

Рассмотрим преимущества компонентов:

  • Обеспечение энергией. Для любой деятельности, даже чистки зубов, нужны определенные усилия. Так как в углеводах содержится сахар, который содержит инсулин, при правильных подсчетах можно регулировать его уровень. Это полезное свойство при сахарном диабете и контроле веса.
  • Борьба с болезнями, спровоцированными нарушением обмена веществ. Углеводные волокна защищают больных сахарным диабетом 2-го типа, с повышенным холестерином и ожирением. Благодаря углеводной диете стабилизируется ритм сердца и кровяное давление.
  • Контроль массы тела. Если изменить список употребляемых продуктов, можно избавиться от избыточного веса. Полностью отказывать от пищи не нужно, иначе возможны нарушения. Например, цельнозерновая еда способствует уменьшению удельного веса.
  • Повышение настроения. Продукты, содержащие углеводы, способствуют увеличенной выработке серотонина. Если от них отказаться, со временем развивается тревожность, депрессия и неоправданный гнев.

Как мы видим, положительных свойств предостаточно, но следует также сказать о вреде. В результате переедания они оказывают негативное влияние на фигуру мужчины или женщины.

После того, как восполняется дефицит, остаточные вещества преобразовываются в жиры и откладываются на проблемных участках тела (животе, бедрах, ягодицах).

Интересно! Особую опасность для здоровья представляют рафинированные углеводы. Они используют энергетические запасы, истощая организм. Из-за синтетического производства легко усваиваются, но не приносят ничего хорошего. В большом количестве есть в лимонадах, шоколаде, чипсах.

Особенность углеводов в том, что их переесть легче, чем жиров и белков. Это обосновано тем, что много углеводов содержится в сладостях, выпечке, газированных напитках. Если бесконтрольно употреблять эту пищу, то очень легко превысить суточную дозу.

Видео

Виды углеводов

Все углеводы делятся на две группы: простые и сложные. Они отличаются друг от друга химическим составом, воздействием на клетки и отвечают на вопрос, что такое углеводы в продуктах питания. Процесс расщепления простых углеводов заканчивается на образовании 1 – 2 моносахаридов. Медленные (или сложные), в свою очередь, состоят из 3-х и больше моносахаридов, которые долго перевариваются и быстро проникают в клетки.

Тип углеводаНазваниеГде встречается
МоносахаридГлюкозаМед, виноград
Фруктоза (фруктовый)Цитрусовые, персики, арбуз, яблоки, варенья, компоты, сухофрукты, соки, джемы
ДисахаридСахароза (пищевой)Мучные кондитерские изделия, сахар, варенье, компот, сок
Лактоза (молочный)Кефир, молоко, сливки
Мальтоза (солодовый)Квас, пиво
ПолисахаридКрахмалКартофель, крупы, макароны и другие мучные изделия
Животный крахмал (гликоген)Запас энер

diets.guru

Что такое углеводы? Простые и сложные углеводы :: SYL.ru

Органические соединения, которые являются основным источником энергии, называются углеводами. Чаще всего сахара встречаются в пище растительного происхождения. Дефицит углеводов может вызвать нарушение работы печени, а их избыток вызывает повышение уровня инсулина. Поговорим о сахарах подробнее.

Что такое углеводы?

Это органические соединения, которые содержат карбонильную группу и несколько гидроксильных. Они входят в состав тканей организмов, а также являются важным компонентом клеток. Выделяют моно -, олиго — и полисахариды, а также более сложные углеводы, такие как гликолипиды, гликозиды и другие. Углеводы являются продуктом фотосинтеза, а также основным исходным веществом биосинтеза других соединений в растениях. Благодаря большому разнообразию соединений данный класс способен играть многоплановые роли в живых организмах. Подвергаясь окислению, углеводы обеспечивают энергией все клетки. Они участвуют в становлении иммунитета, а также входят в состав многих клеточных структур.

Виды сахаров

Органические соединения делятся на две группы — простые и сложные. Углеводы первого типа — моносахариды, которые содержат карбонильную группу и представляют собой производные многоатомных спиртов. Ко второй группе принадлежат олигосахариды и полисахариды. Первые состоят их остатков моносахаридов (от двух до десяти), которые соединены гликозидной связью. Вторые могут содержать в своем составе и сотни и даже тысячи мономеров. Таблица углеводов, которые чаще всего встречаются, выглядит следующим образом:

  1. Глюкоза.
  2. Фруктоза.
  3. Галактоза.
  4. Сахароза.
  5. Лактоза.
  6. Мальтоза.
  7. Раффиноза.
  8. Крахмал.
  9. Целлюлоза.
  10. Хитин.
  11. Мурамин.
  12. Гликоген.

Список углеводов обширен. Остановимся на некоторых из них подробнее.

Простая группа углеводов

В зависимости от места, которое занимает карбонильная группа в молекуле, различают два вида моносахаридов – альдозы и кетозы. У первых функциональной группой является альдегидная, у вторых – кетонная. В зависимости от числа углеродных атомов, входящих в молекулу, складывается название моносахарида. Например, альдогексозы, альдотетрозы, кетотриозы и так далее. Эти вещества чаще всего не имеют цвета, плохо растворимы в спирте, но хорошо в воде. Простые углеводы в продуктах – твердые, не гидролизуются при переваривании. Некоторые из представителей обладают сладким вкусом.

Представители группы

Что относится к углеводам простого строения? Во-первых, это глюкоза, или альдогексоза. Она существует в двух формах – линейной и циклической. Наиболее точно описывает химические свойства глюкозы — это вторая форма. Альдогексоза содержит шесть атомов углерода. Вещество не имеет цвета, но зато сладкое на вкус. Отлично растворяется в воде. Встретить глюкозу можно практически везде. Она существует в органах растений и животных организмах, а также во фруктах. В природе альдогексоза образуется в процессе фотосинтеза.

Во-вторых, это галактоза. Вещество отличается от глюкозы расположением в пространстве гидроксильной и водородной групп у четвертого атома углерода в молекуле. Обладает сладким вкусом. Она встречается в животных и растительных организмах, а также в некоторых микроорганизмах.

И третий представитель простых углеводов – фруктоза. Вещество является самым сладким сахаром, полученным в природе. Она присутствует в овощах, фруктах, ягодах, меде. Легко усваивается организмом, быстро выводится из крови, что обуславливает ее применение больными сахарным диабетом. Фруктоза содержит мало калорий и не вызывает кариес.

Продукты, богатые простыми сахарами

Содержание углеводов простых в пище различно. Например, присутствие фруктозы на 100 г продукта составляет:

  1. 90 г – кукурузный сироп.
  2. 50 г – сахара-рафинад.
  3. 40,5 г – мед.
  4. 24 г – инжир.
  5. 13 г – курага.
  6. 4 г – персики.

Суточное употребление данного вещества не должно превышать 50 г. Что касается глюкозы, то в этом случае соотношение будет немного другое:

  1. 99,9 г – сахар-рафинад.
  2. 80,3 г – мед.
  3. 69,2 г – финики.
  4. 66,9 г – перловая крупа.
  5. 61,8 г – овсяные хлопья.
  6. 60,4 г – гречка.

Чтобы рассчитать суточное употребление вещества, необходимо вес умножить на 2,6. Простые сахара обеспечивают энергией человеческий организм и помогают справляться с разными токсинами. Но нельзя забывать, что при любом употреблении должна быть мера, иначе серьезные последствия не заставят долго ждать.

Олигосахариды

Наиболее часто встречающимся видом в данной группе являются дисахариды. Что такое углеводы, содержащие несколько остатков моносахаридов? Они представляют собой гликозиды, содержащие мономеры. Моносахариды связаны между собой гликозидной связью, которая образуется в результате соединения гидроксильных групп. Исходя из строения дисахариды делятся на два виды: восстанавливающие и не восстанавливающие. К первому относится мальтоза и лактоза, а ко второму сахароза. Восстанавливающий тип обладает хорошей растворимостью и имеет сладкий вкус. Олигосахариды могут содержать более двух мономеров. Если моносахариды одинаковые, то такой углевод относится к группе гомополисахаридов, а если разные, то к гетерополисахаридов. Примером последнего типа является трисахарид раффиноза, которая содержит остатки глюкозы, фруктозы и галактозы.

Лактоза, мальтоза и сахароза

Последнее вещество хорошо растворяется, имеет сладкий вкус. Сахарный тростник и свекла являются источником получения дисахарида. В организме при гидролизе сахароза распадается на глюкозу и фруктозу. Дисахарид в больших количествах содержится в сахаре-рафинаде (99,9 г на 100 г продукта), в черносливе (67,4 г), в винограде (61,5 г) и в других продуктах. При избыточном поступлении этого вещества увеличивается способность превращаться в жир практически всех пищевых веществ. Также повышается уровень холестерина в крови. Большое количество сахарозы негативно влияет на кишечную флору.

Молочный сахар, или лактоза, содержится в молоке и его производных. Углевод расщепляется до галактозы и глюкозы благодаря специальному ферменту. Если его в организме нет, то наступает непереносимость молока. Солодовый сахар или мальтоза является промежуточным продуктом распада гликогена и крахмала. В пищевых продуктах вещество встречается в солоде, патоке, меде и проросших зернах. Состав углеводов лактозы и мальтозы представлен остатками мономеров. Только в первом случае ими являются D-галактоза и D-глюкоза, а во втором вещество представлено двумя D-глюкозами. Оба углевода являются восстанавливающимися сахарами.

Полисахариды

Что такое углеводы сложные? Они отличаются друг от друга по нескольким признакам:

1. По строению мономеров, включенных в цепь.

2. По порядку нахождения моносахаридов в цепи.

3. По типу гликозидных связей, которые соединяют мономеры.

Как и у олигосахаридов, в данной группе можно выделить гомо -, и гетерополисахариды. К первой относятся целлюлоза и крахмал, а ко второй – хитин, гликоген. Полисахариды являются важным источником энергии, который образуется в результате обмена веществ. Они участвуют в иммунных процессах, а также в сцеплении клеток в тканях.

Список сложных углеводов представлен крахмалом, целлюлозой и гликогеном, их мы рассмотрим подробнее. Одним из главных поставщиков углеводов является крахмал. Это соединения, которые включают сотни тысяч остатков глюкозы. Углевод рождается и хранится в виде зернышек в хлоропластах растений. Благодаря гидролизу крахмал переходит в водорастворимые сахара, что способствует свободному перемещению по частям растения. Попадая в человеческий организм, углевод начинает распадаться уже во рту. В наибольшем количестве крахмал содержат зерна злаков, клубни и луковицы растений. В рационе на его долю приходится около 80% всего количества употребляемых углеводов. Наибольшее количество крахмала, в расчете на 100 г продукта, содержится в рисе – 78 г. Чуть меньше в макаронах и пшене – 70 и 69 г. Сто грамм ржаного хлеба включает в себя 48 г крахмала, а в той же порции картофеля его количество достигает лишь 15 г. Суточная потребность человеческого организма в данном углеводе равна 330-450 г.Зерновые продукты также содержат клетчатку или целлюлозу. Углевод входит в состав клеточных стенок растений. Его вклад равен 40-50 %. Человек не способен переварить целлюлозу, так нет необходимого фермента, который бы осуществлял процесс гидролиза. Но мягкий тип клетчатки, например, картофеля и овощей, способен хорошо усваиваться в пищеварительном тракте. Каково содержание данного углевода в 100 г еды? Ржаные и пшеничные отруби являются самыми богатыми клетчаткой продуктами. Их содержание достигает 44 г. Какао-порошок включает 35 г питательного углевода, а сухие грибы лишь 25. Шиповник и молотый кофе содержат 22 и 21 г. Одними из самых богатых на клетчатку фруктов являются абрикос и инжир. Содержание углевода в них достигает 18 г. В сутки человеку нужно съедать целлюлозы до 35 г. Причем наибольшая потребность в углеводе наступает в возрасте от 14 до 50 лет.

В роле энергетического материала для хорошей работы мышц и органов используется полисахарид гликоген. Пищевого значения он не имеет, так как содержание его в еде крайне низкое. Углевод иногда называют животным крахмалом из-за схожести в строении. В данной форме в животных клетках хранится глюкоза (в наибольшем количестве в печени и мышцах). В печени у взрослых людей количество углевода может достигать до 120 г. Лидером по содержанию гликогена являются сахар, мед и шоколад. Также большим содержанием углевода могут «похвастаться» финики, изюм, мармелад, сладкая соломка, бананы, арбуз, хурма и инжир. Суточная норма гликогена равна 100 г в сутки. Если человек интенсивно занимается спортом или выполняет большую работу, связанную с умственной деятельностью, количество углевода должно быть увеличено. Гликоген относится к легко усваиваемым углеводам, которые хранятся про запас, что говорит о его использовании только в случае недостатка энергии от других веществ.

К полисахаридам также относятся следующие вещества:

1. Хитин. Он входит в состав роговых оболочек членистоногих, присутствует в грибах, низших растениях и в беспозвоночных животных. Вещество играет роль опорного материала, а также выполняет механические функции.

2. Мурамин. Он присутствует в качестве опорно-механического материала клеточной стенки бактерий.

3. Декстраны. Полисахариды выступают как заменители плазмы крови. Их получают путем воздействия микроорганизмов на раствор сахарозы.

4. Пектиновые вещества. Находясь вместе с органическими кислотами, могут образовывать желе и мармелад.

Белки и углеводы. Продукты. Список

Человеческий организм нуждается в определенном количестве питательных веществ каждый день. Например, углеводов необходимо употреблять в расчете 6-8 г на 1 кг массы тела. Если человек ведет активный образ жизни, то количество будет увеличиваться. Углеводы в продуктах содержатся практически всегда. Составим список их присутствия на 100 г пищи:

  1. Наибольшее количество (более 70 г) содержатся в сахаре, мюслях, мармеладе, крахмале и рисе.
  2. От 31 до 70 г — в мучных и кондитерских изделиях, в макаронах, крупах, сухофруктах, фасоли и горохе.
  3. От 16 до 30 г углеводов содержат бананы, мороженое, шиповник, картофель, томатная паста, компоты, кокос, семечки подсолнечника и орехи кешью.
  4. От 6 до 15 г — в петрушке, укропе, свекле, моркови, крыжовник, смородина, бобах, фруктах, орехах, кукурузе, пиве, семечках тыквы, сушеных грибах и так далее.
  5. До 5 г углеводов содержится в зеленом луке, томатах, кабачках, тыквах, капусте, огурцах, клюкве, в молочных продуктах, яйцах и так далее.

Питательного вещества не должно поступать в организм меньше 100 г в сутки. В противном случае клетка не будет получать положенную ей энергию. Головной мозг не сможет выполнять свои функции анализа и координации, следовательно, мышцы не будут получать команды, что в итоге приведет к кетозу.

Что такое углеводы, мы рассказали, но, помимо них, незаменимым веществом для жизни являются белки. Они представляют собой цепочку аминокислот, связанных пептидной связью. В зависимости от состава белки различаются по своим свойствам. Например, эти вещества исполняют роль строительного материала, так как каждая клетка организма включает их в свой состав. Некоторые виды белков являются ферментами и гормонами, а также источником энергии. Они оказывают влияние на развитие и рост организма, регулируют кислотно-щелочной и водный баланс.

Таблица углеводов в еде показала, что в мясе и в рыбе, а также в некоторых видах овощей их число минимально. А каково содержание белков в пище? Самым богатым продуктом является желатин пищевой, на 100 г в нем содержится 87,2 г вещества. Далее идет горчица (37,1 г) и соя (34,9 г). Соотношение белков и углеводов в суточном употреблении на 1 кг веса должно быть 0,8 г и 7 г. Для лучшего усвоения первого вещества необходимо принимать пищу, в которой он принимает легкую форму. Это касается белков, которые присутствуют в кисломолочных продуктах и в яйцах. Плохо сочетаются в одном приеме пищи белки и углеводы. Таблица по раздельному питанию показывает, каких вариаций лучше избегать:

  1. Рис с рыбой.
  2. Картофель и курица.
  3. Макароны и мясо.
  4. Бутерброды с сыром и ветчиной.
  5. Рыба в панировке.
  6. Ореховые пирожные.
  7. Омлет с ветчиной.
  8. Мучное с ягодами.
  9. Дыню и арбуз нужно есть отдельно за час до основного приема пищи.

Хорошо сочетаются:

  1. Мясо с салатом.
  2. Рыба с овощами или на гриле.
  3. Сыр и ветчина по отдельности.
  4. Орехи в целом виде.
  5. Омлет с овощами.

Правила раздельного питания основаны на знаниях законов биохимии и информации о работе ферментов и пищевых соков. Для хорошего пищеварения любой вид еды требует индивидуального набора желудочных жидкостей, определенного количества воды, щелочную или кислотную среду, а также присутствие или отсутствие энзимов. Например, кушанье, насыщенное углеводами, для лучшего переваривания требует пищеварительного сока с щелочными ферментами, которые расщепляют данные органические вещества. А вот еда, богатая белками, уже требует кислых энзимов… Соблюдая нехитрые правила соответствия продуктов, человек укрепляет свое здоровье и поддерживает постоянный вес, без помощи диет.

«Плохие» и «хорошие» углеводы

«Быстрые» (или «неправильные») вещества – соединения, которые содержат небольшое число моносахаридов. Такие углеводы способны быстро усваиваться, повышать уровень сахара в крови, а также увеличивать количество выделяемого инсулина. Последний снижает уровень сахара крови, путем превращения его в жир. Употребление углеводов после обеда для человека, который следит за своим весом, представляет наибольшую опасность. В это время организм наиболее предрасположен к увеличению жировой массы. Что именно содержит неправильные углеводы? Продукты, список которых представлен ниже:

1. Кондитерские изделия.

2. Сахар.

3. Варенье.

4. Сладкие соки и компоты.

5. Хлеб.

6. Мысли.

7. Картофель.

8. Макароны.

9. Белый рис.

10. Шоколад.

11. Чипсы.

В основном это продукты, не требующие долгого приготовления. После такой еды необходимо много двигаться, иначе лишний вес даст о себе знать.

«Правильные» углеводы содержат более трех простых мономеров. Они усваиваются медленно и не вызывают резкого подъема сахара. Данный вид углеводов содержит большое количество клетчатки, которая практически не переваривается. В связи с этим человек долго остается сытым, для расщепления такой пищи требуется дополнительная энергия, кроме того, происходит естественное очищение организма. Составим список сложных углеводов, а точнее, продуктов, в которых они встречаются:

  1. Хлеб с отрубями и цельнозерновой.
  2. Гречневая и овсяная каши.
  3. Зеленые овощи.
  4. Макароны из грубого помола.
  5. Грибы.
  6. Горох.
  7. Красная фасоль.
  8. Помидоры.
  9. Молочные продукты.
  10. Фрукты.
  11. Соя.
  12. Горький шоколад.
  13. Ягоды.
  14. Чечевица.

Для подержания себя в хорошей форме нужно больше есть «хороших» углеводов в продуктах и как можно меньше «плохих». Последние лучше принимать в первую половину дня. Если нужно похудеть, то лучше исключить употребление «неправильных» углеводов, так как при их использовании человек получает пищу в большем объеме. «Правильные» питательные вещества низкокалорийные, они способны надолго оставлять ощущение сытости. Это не означает полный отказ от «плохих» углеводов, а лишь только их разумное употребление.

www.syl.ru

Углевод — это… Что такое Углевод?

.

Углево́ды (сахара) — общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Причиной этого является то, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединеними углерода и воды.

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу а также несколько гидроксильных групп.

Простые и сложные углеводы

По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (олигосахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием простых углеводов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях.

Биологическая роль и биосинтез углеводов

Биологическое значение углеводов:

  1. Углеводы выполняют пластическую функцию, то есть участвуют в построении костей, клеток, ферментов. Они составляют 2-3 % от веса.
  2. Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
  3. В крови содержится 100—110 мг/% глюкозы. От концентрации глюкозы зависит осмотическое давление крови.
  4. Пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ,ДНК и РНК.
  5. Углеводы выполняют защитную роль в растениях.

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Cx(H2O)y + xO2 → xCO2 + yH2O + энергия.

В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2 + yH2O → Cx(H2O)y + xO2

Важнейшие источники углеводов

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70-80 % сахара.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов

Моносахариды

Олигосахариды

Полисахариды

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

в чем содержаться быстрые и медленные углеводы

Home » Питание » Простые и сложные углеводы: в чем содержаться и какие полезно есть

Углеводы – непростая тема. С одной стороны, большинство программ здорового питания основаны на употреблении большого количества углеводов – более 60% от суточной нормы калорий, при этом сводится к минимуму употребление жиров (например, Американская диета).

С другой стороны, многие диетологи полагают, что уменьшение количества углеводов в рационе не только положительно скажется на похудении, но и будет полезно для здоровья в целом. Низкоуглеводные диеты рекомендуют всего 10% от всех полученных калорий отводить углеводам, отдавая предпочтение жирам и белкам.

Оставив в стороне все доводы «за» и «против», нужно понимать, что не существует «хороших» или «плохих» углеводов. На самом деле существует несколько их видов, главным образом делящихся на два типа: простые и сложные. На 1 грамм углеводов приходится 4 килокалории, они являются источником энергии для организма. Не смотря на то, что одни усваиваются быстро, а другие медленно, количество калорий у них одинаково.

Итак, что такое простые и сложные углеводы? В данной статье я объясню разницу между простыми и сложными углеводами, что поможет вам сделать правильный выбор, который принесет пользу здоровью. Я постаралась сделать эту тему максимально простой и понятной.

Простые углеводы

Простые углеводы (т.е. сахара) состоят из одной или двух молекул сахара и имеют простую молекулярную структуру, что и объясняет их название. Т.е. углеводы, которые состоят из одной молекулы сахара, называются моносахаридами:

  • Глюкоза – самый распространенный вид сахара;
  • Фруктоза – содержится во фруктах;
  • Галактоза – содержится в молочных продуктах.

Те углеводы, которые имеют в составе две молекулы сахара, называются дисахаридами:

  • Сахароза – глюкоза + фруктоза;
  • Лактоза – глюкоза + галактоза;
  • Мальтоза – два остатка глюкозы, соединенные между собой.

Многие считают легкие углеводы вредными из-за того, что они так же известны как сахар. Однако, это не совсем верно. Так, если белый столовый сахар (сахароза) точно можно считать вредным, то сахар, что содержится во фруктах (фруктоза) довольно полезен, так как поступает в организм вместе с витаминами, минералами, аминокислотами и клетчаткой.

Конечно, между натуральными простыми углеводами и рафинированными есть разница. Чтобы ее понять все, что вам нужно это задать себе вопрос: «Был этот продукт выращен или нет?». Если ответ положительный, возможно, такой вид углеводов подойдет вам в отличие от того, который был произведен искусственным путем.

Таблица, которая поможет вам разобраться:

“Хорошие” простые углеводы“Плохие” простые углеводы
ЯблокиСладкая газированная вода
АпельсиныСладости
БананыТорты и печенье
ГрушиКонфеты
МолокоКонцентрированный сок
Свежевыжатый сокПродукты с добавлением сахара

Как вы видите, быстрые углеводы тоже могут быть полезными. Конечно, если вы хотите избавиться от лишнего веса и вести здоровый образ жизни, вам следует свести к минимуму употребление «плохих» углеводов.

Сложные углеводы

Данный вид углеводов имеет в своем составе сложную цепочку молекул сахара, называемых полисахаридами (прим. poly — много). Они получили свое название из-за более сложной структуры, иногда их называют иначе – крахмалы.

Считается, что крахмал полезнее, чем простые углеводы, но это не всегда так.

К сложным углеводам относятся хлеб, рис, макароны, картофель (и другие овощи), крупы и злаки. Эти продукты есть в рационе практически каждого человека, многие предпочитают их из-за низкого количества жиров.

Дело в том, что и сложные углеводы могут быть «хорошими» или «плохими». Например, все знают, что чрезмерное употребление белого хлеба вредит организму, однако, он считается сложным углеводом. То же самое можно сказать и о картофельных чипсах!

Так что же делает медленные углеводы «хорошими» и «плохими»? Как правило, все дело в количестве обработки, которой подвергается продукт. Натуральные продукты называют нерафинированными, а те, которые прошли обработку, считаются рафинированными.

Первые, как правило, гораздо полезнее.

Ниже представлена таблица, которая поможет понять разницу:

“Хорошие” нерафинированные углеводы“Плохие” рафинированные углеводы
Макароны из цельнозерновой мукиМакароны из «белой» муки
Коричневый рисБелый рис
Крупы (квиноа, гречневая крупа, спельта (прим. разновидность пшеницы)Картофель фри
КартофельБольшинство «готовых» продуктов
ОвощиБелый хлеб

Продукт, подвергшийся обработке, теряет большую часть важных питательных веществ, таких как витамины, минералы,  аминокислоты и, самое главное, клетчатку…

Клетчатка

Клетчатка или пищевые волокна – это один из видов углевода. Она содержится и в простых, и в сложных группах. Пищевое волокно тяжело усваивается организмом и практически не содержит калорий, однако это не значит, что от него нужно отказаться!

Полное название клетчатки – крахмальный полисахарид и существует он в двух видах: растворимый и нерастворимый.

Растворимые пищевые волокна растворяются в воде и содержатся в кожуре растений и злаков. Попадая в организм, они впитывают в себя излишки желчной кислоты и холестерина, что, несомненно, полезно.

Нерастворимые пищевые волокна не растворяются в воде и содержатся в кожуре фруктов и овощей, а так же в шелухе зерен. Попадая в пищеварительный тракт они, словно щетка, очищают ваш кишечник.

Для здоровой работы организма вам нужны оба вида клетчатки, что составляет 14 грамм на 1000 калорий. Если вы употребляете 2000 калорий в день, вы должны съесть 28 грамм клетчатки.

Проще всего получить пищевые волокна из натуральных овощей, фруктов и зерновых.

Переход на низкоуглеводное питание

Итак, поможет ли снизить вес ограничение углеводов? Да, поможет! Вы будете съедать меньше калорий, а организм начнет использовать жир в качестве энергии.

Но небольшое количество углеводов все же необходимо для получения витаминов, минералов и клетчатки.

Вы можете отказаться от углеводов и получать питательные вещества из фруктов и овощей (исключив при этом зерновые и рафинированные продукты).

Существует несколько разновидностей низкоуглеводных диет (их называют кетогенными диетами), которые полностью ограничивают потребление углеводов. Не нужно заходить так далеко, если не хотите. Тему кетогенных диет лучше оставить для другой статьи! Просто ешьте больше овощей и меньше хлеба, риса, макарон и картофеля, это поможет сбросить лишний вес. Прочтите мою статью «Легкая низкоуглеводная диета».

Заключение

Теперь вы знаете, чем отличаются углеводы простые от углеводов сложных, рафинированные углеводы от нерафинированных. Кроме того, вы узнали немного и о клетчатке. Все это поможет вам решить, какие углеводы можно есть (нерафинированные), а каких стоит избегать (рафинированные) чтобы похудеть и оставаться здоровыми.

zdravpit.com

Простые и сложные углеводы: различия и список продуктов

Не все углеводы одинаковы. Узнайте, как простые и сложные углеводы воздействуют на вас. Также мы приведем список рекомендованных продуктов.

Простые и сложные углеводы: различия и список продуктов

Диетологов часто мучают вопросами о том, существенна ли разница между простыми и сложными углеводами. Существует точка зрения, что эта разница не велика. Все это углеводы, в конечном счете они распадаются до глюкозы, которая является основным источников энергии для организма. Есть и другая точка зрения: все, что связано со здоровьем и правильным питанием, может наносить как вред, так и пользу.

Принципы «гибкой» диеты заставили многих людей поверить, что нет разницы между 25 граммами углеводов из батата и печенья. Согласно принципам этой диеты, если вы вписываете количество простых углеводов в свою дневную норму, то все отлично.

На самом же деле структура и состав углеводов напрямую влияет на то, как организм будет их усваивать. А это оказывает влияние на уровень глюкозы в крови, уровень энергии и чувство сытости. Если ваш подход к углеводам основан не на принципах здорового образа жизни, а лишь на их строгом подсчете, то весь день за подъемом энергии будет следовать спад, прямо как на  «американских горках». В долгосрочной перспективе это нанесет вред вашему метаболизму и будет критично для похудения.

 

1.Как устроены простые и сложные углеводы

Простые углеводы состоят из одного или нескольких соединений (до 20), называющихся сахаридами. Количество этих соединений в сложных углеводах намного больше – от 20 до 100 и даже выше. Это значит, что каждый продукт организм будет переваривать по-разному.

Читайте также: Углеводы как топливо для кроссфит-тренировок  

2. Гликемический индекс и скорость усвоения

Гликемический индекс (ГИ) – система, показывающая по шкале от 0 до 100, как быстро глюкоза (конечный продукт распада углеводов) поступает в кровь. Чем выше значение гликемического индекса, тем быстрее после приема пищи глюкоза всасывается в кровь.

  • Примеры простых углеводов: картофель, белый хлеб, белый рис, печенье, сладости, фруктовые соки, спортивные напитки.
  • Примеры сложных углеводов: бурый рис, овсянка, яблоки, апельсины, брокколи, цветная капуста, морковь.

От того, как быстро глюкоза поступает в кровь, во многом зависит здоровье, самочувствие и аппетит человека.

 

3. Подъем уровня инсулина и глюкозы в крови

Когда глюкоза поступает в кровоток, поджелудочная железа начинает вырабатывать инсулин. Он служит проводником для того, чтобы направить глюкозу в мышечные или жировые клетки, нормализовав тем самым ее уровень в крови. Если глюкоза быстро поступает в кровь, например после съеденных сладостей, большое количество инсулина высвобождается, чтобы транспортировать глюкозу в клетки.

Спустя некоторое время чрезмерная выработка инсулина (гиперинсулинемия) подвергает поджелудочную железу настоящему испытанию, и та перестает вырабатывать инсулин. Национальное американское исследование здоровья и питания, проведенное в 2005-2006 годах с целью выявить распространенность преддиабета и его связь с группой кардиометаболических факторов риска и гиперинсулинемией среди подростков (результаты его были опубликованы в журнале «Внимание к диабету»), показало, что в конечном итоге гиперинсулинемия приводит к ослабленному усвоению глюкозы и набору лишнего веса.

Многочисленные исследования (такие как «Абдоминальный жир и инсулинорезистентность у женщин с нормальным и лишним весом», опубликованное в журнале «Диабет» в 1996 г., «Роль глюкозы и резистентности к инсулину в развитии диабета 2-го типа: результаты 25-летнего исследования» — журнал «Ланцет», 1992 г.; «Резистентность к инсулину и гиперинсулинемия» — журнал «Внимание к диабету», 2008 г.) выявили следующее. В результате частого воздействия инсулина клетки никак на него не реагируют – наступает так называемая инсулинорезистентность. Это приводит к повышенному уровню глюкозы в крови. Увеличивается риск возникновения сахарного диабета 2-го типа и некоторых видов нарушений обмена веществ.

В то же время прием в пищу сложных углеводов приводит к более медленному поступлению глюкозы в кровь, меньшему выбросу инсулина и не вызывает скачков уровня глюкозы в крови. Это, безусловно, полезнее для здоровья.

 

4. Энергия и самочувствие

Следует учитывать незапланированные пропуски приемов пищи. Это может соответствовать вашему плану похудения, а может происходить в силу загруженного графика. Если вы не едите долгое время, уровень глюкозы в крови находится ниже уровня нормы. Начинается так называемая гипогликемия. Ее симптомы: усталость, головокружение, голод и непреодолимое желание съесть что-то сладкое.

Прием в пищу быстрых углеводов после долгого голодания вызовет быстрое поступление глюкозы в кровь, а затем и в клетки. Это приведет к скачку уровня сахара. Поэтому если вы регулярно делаете выбор в пользу простых углеводов в течение дня, уровень вашей работоспособности будет постоянно скакать вверх-вниз.

Читайте также: Углеводное чередование – диета и меню  

5. Сытость от приема быстрых и медленных углеводов

Чувство голода связано с пищеварением и количеством пищи в желудке. Чем быстрее углеводы усвоятся и пройдут по желудочно-кишечному тракту, тем быстрее вы снова испытаете голод. Простые углеводы быстро перевариваются, но особой сытости не приносят.

С другой стороны, медленные углеводы перевариваются намного дольше. Во многом это происходит из-за неусваиваемых пищевых волокон – клетчатки. Технически это углевод, но действует клетчатка по-другому. Она увеличивает время усвоения пищи, и гормон голода вырабатывается медленнее. Соответственно, чувство голода возникает позже.

В 1996 году в американском журнале физиологически-регуляторной, интегративной и сравнительной психологии было опубликовано интересное исследование под заголовком «Объем желудка, а не содержание питательных веществ препятствует приемам пищи». Там отмечалось, что клетчатка также придает массы съеденной пище. Из-за этого она занимает больше места в желудке. Это естественное «растягивание» усиливает чувство сытости. Если ваша диета в самом разгаре, стоит налегать на клетчатку.

Конечно, размер порции и содержащиеся в пище другие нутриенты влияют на чувство сытости. Но факт остается фактом: после приема быстрых углеводов вы скоро снова проголодаетесь.

 

6. Пищевая ценность углеводов


Каши — отличный источник углеводов.

Всем известно, что сладости, печенье и торты не имеют особой пищевой ценности. Но и содержание нужных нам питательных элементов во вроде бы полезных крупах, рисе, макаронах и хлебе может быть крайне низким.

Производитель часто отделяет крупу от эндосперма и отрубей, которые богаты полезными веществами, клетчаткой и ненасыщенными жирными кислотами. Остается простой углевод, крупа теряет свою целостность. Теряются витамины и минералы, а вместе с ними и клетчатка, придающая чувство сытости. Конечно, процесс «обогащения» продукта возвращает некоторые вещества, но не все, и уж точно не клетчатку. 

Будучи необработанной, цельная крупа богата полезными элементами и клетчаткой. Она является сложным углеводом. Когда вы едите необработанные продукты вроде нешлифованного бурого риса или цельнозернового хлеба, вы получаете всю их пользу. А это улучшает здоровье, придает энергии и усиливает иммунитет.

Читайте также: Какая диета самая эффективная для снижения веса?  

Итог

Нужно ли избегать простых углеводов? Абсолютно нет. Они нужны нам в определенных ситуациях, например во время и после тренировки или по особым случаям. Но если вы хотите улучшить здоровье, повысить энергию и побороть голод (а это основы правильного питания), вы должны понимать разницу между быстрыми и медленными углеводами.

Выбирая богатые клетчаткой сложные углеводы вместо обработанных продуктов, вы обретете контроль над своим весом, здоровьем и энергией.

Список рекомендуемых для правильного питания и диеты продуктов: нешлифованный бурый рис, макароны из твердых сортов пшеницы, цельнозерновой хлеб, необработанные крупы, батат, брокколи, цветная капуста, морковь.

Из простых углеводов следует отдавать предпочтение натуральным продуктам, таким как свежие фрукты и ягоды.

a:43:{s:16:»ADD_REVIEW_PLACE»;s:1:»1″;s:17:»BUTTON_BACKGROUND»;s:7:»#dbbfb9″;s:10:»CACHE_TIME»;s:8:»36000000″;s:10:»CACHE_TYPE»;s:1:»A»;s:26:»COMMENTS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:20:»COMPOSITE_FRAME_MODE»;s:1:»A»;s:20:»COMPOSITE_FRAME_TYPE»;s:4:»AUTO»;s:11:»DATE_FORMAT»;s:5:»d.m.Y»;s:21:»DEFAULT_RATING_ACTIVE»;s:1:»3″;s:12:»FIRST_ACTIVE»;s:1:»2″;s:10:»ID_ELEMENT»;s:4:»5082″;s:11:»INIT_JQUERY»;s:1:»N»;s:10:»MAX_RATING»;s:1:»5″;s:12:»NOTICE_EMAIL»;s:0:»»;s:13:»PRIMARY_COLOR»;s:7:»#a76e6e»;s:27:»QUESTIONS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:25:»REVIEWS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:13:»SHOW_COMMENTS»;s:1:»Y»;s:14:»SHOW_QUESTIONS»;s:1:»N»;s:12:»SHOW_REVIEWS»;s:1:»N»;s:18:»COMPONENT_TEMPLATE»;s:4:»blog»;s:17:»~ADD_REVIEW_PLACE»;s:1:»1″;s:18:»~BUTTON_BACKGROUND»;s:7:»#dbbfb9″;s:11:»~CACHE_TIME»;s:8:»36000000″;s:11:»~CACHE_TYPE»;s:1:»A»;s:27:»~COMMENTS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:21:»~COMPOSITE_FRAME_MODE»;s:1:»A»;s:21:»~COMPOSITE_FRAME_TYPE»;s:4:»AUTO»;s:12:»~DATE_FORMAT»;s:5:»d.m.Y»;s:22:»~DEFAULT_RATING_ACTIVE»;s:1:»3″;s:13:»~FIRST_ACTIVE»;s:1:»2″;s:11:»~ID_ELEMENT»;s:4:»5082″;s:12:»~INIT_JQUERY»;s:1:»N»;s:11:»~MAX_RATING»;s:1:»5″;s:13:»~NOTICE_EMAIL»;s:0:»»;s:14:»~PRIMARY_COLOR»;s:7:»#a76e6e»;s:28:»~QUESTIONS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:26:»~REVIEWS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:14:»~SHOW_COMMENTS»;s:1:»Y»;s:15:»~SHOW_QUESTIONS»;s:1:»N»;s:13:»~SHOW_REVIEWS»;s:1:»N»;s:19:»~COMPONENT_TEMPLATE»;s:4:»blog»;s:8:»TEMPLATE»;s:4:»blog»;}

a:43:{s:16:»ADD_REVIEW_PLACE»;s:1:»1″;s:17:»BUTTON_BACKGROUND»;s:7:»#dbbfb9″;s:10:»CACHE_TIME»;s:8:»36000000″;s:10:»CACHE_TYPE»;s:1:»A»;s:26:»COMMENTS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:20:»COMPOSITE_FRAME_MODE»;s:1:»A»;s:20:»COMPOSITE_FRAME_TYPE»;s:4:»AUTO»;s:11:»DATE_FORMAT»;s:5:»d.m.Y»;s:21:»DEFAULT_RATING_ACTIVE»;s:1:»3″;s:12:»FIRST_ACTIVE»;s:1:»2″;s:10:»ID_ELEMENT»;s:4:»5082″;s:11:»INIT_JQUERY»;s:1:»N»;s:10:»MAX_RATING»;s:1:»5″;s:12:»NOTICE_EMAIL»;s:0:»»;s:13:»PRIMARY_COLOR»;s:7:»#a76e6e»;s:27:»QUESTIONS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:25:»REVIEWS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:13:»SHOW_COMMENTS»;s:1:»Y»;s:14:»SHOW_QUESTIONS»;s:1:»N»;s:12:»SHOW_REVIEWS»;s:1:»N»;s:18:»COMPONENT_TEMPLATE»;s:4:»blog»;s:17:»~ADD_REVIEW_PLACE»;s:1:»1″;s:18:»~BUTTON_BACKGROUND»;s:7:»#dbbfb9″;s:11:»~CACHE_TIME»;s:8:»36000000″;s:11:»~CACHE_TYPE»;s:1:»A»;s:27:»~COMMENTS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:21:»~COMPOSITE_FRAME_MODE»;s:1:»A»;s:21:»~COMPOSITE_FRAME_TYPE»;s:4:»AUTO»;s:12:»~DATE_FORMAT»;s:5:»d.m.Y»;s:22:»~DEFAULT_RATING_ACTIVE»;s:1:»3″;s:13:»~FIRST_ACTIVE»;s:1:»2″;s:11:»~ID_ELEMENT»;s:4:»5082″;s:12:»~INIT_JQUERY»;s:1:»N»;s:11:»~MAX_RATING»;s:1:»5″;s:13:»~NOTICE_EMAIL»;s:0:»»;s:14:»~PRIMARY_COLOR»;s:7:»#a76e6e»;s:28:»~QUESTIONS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:26:»~REVIEWS_TEXTBOX_MAXLENGTH»;s:4:»1000″;s:14:»~SHOW_COMMENTS»;s:1:»Y»;s:15:»~SHOW_QUESTIONS»;s:1:»N»;s:13:»~SHOW_REVIEWS»;s:1:»N»;s:19:»~COMPONENT_TEMPLATE»;s:4:»blog»;s:8:»TEMPLATE»;s:4:»blog»;}

best.fit


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*
*