Вход в личный кабинет | Регистрация
Избранное (0) Список сравнения (0)
Ваши покупки:
0 товаров на 0 Р
Итого: 0 Р Купить

Какие вещества называются углеводами: 1 Какие вещества называют углеводами? Почему? Как этот класс органических соединений иллюстрирует идею взаимосвязи органических и неорганических веществ, т. е. единство химической организации материального мира?

Содержание

Какие вещества относятся к углеводам. Какие углеводы потреблять? Какие вещества называются углеводами

Углеводы – большой класс органических соединений, универсальный источник энергии для организма человека. Углеводы необходимы для нормального , они участвуют в производстве гормонов, ферментов и других соединений организма. Для правильного питания необходимо знать какая пища относится к углеводам, а также уметь отличать простые и сложные углеводы.

Что относится к простым углеводам?

Простые, или быстрые углеводы – это сахароза, фруктоза и глюкоза. Продукты, содержащие много простых углеводов, вызывают производство большого количества инсулина и запускают процесс отложения жиров. Именно поэтому простые углеводы рекомендуется исключать во время диет.

Однако глюкоза необходима организму для нормального обмена веществ и работы мозга. Употреблять ее желательно в разумных количествах, а содержится она в основном в ягодах и фруктах, чемпионами по количеству глюкозы являются вишня, арбуз, малина, тыква, виноград.

Фруктоза также содержится в ягодах и фруктах. Она более сладкая, поэтому за счет замены сахара фруктозой можно снизить общую калорийность употребляемых сладостей. Кроме того, фруктоза не вызывает резкого скачка уровня инсулина, поэтому она рекомендована диабетикам вместо сахара.

Сахароза – самый неполезный углевод. Он очень быстро расщепляется и складируется в жировых клетках. Содержится сахароза в кондитерских изделиях, сладких напитках, мороженом, а также – в свекле, персиках, дыне, моркови, мандаринах и т.д.

Сложные, или медленные углеводы – это крахмал, пектины, клетчатка, гликоген. На расщепление этих углеводов организм тратит достаточно большое количество энергии, в кровь они поступают равномерно и в небольших объемах, поэтому создают ощущение сытости и не вызывают резкого скачка инсулина.

Советы по правильному питанию

Диетологи не рекомендуют полностью исключать из рациона. Естественно, простые углеводы следует ограничить, а сложные желательно употреблять в первой половине дня. Если вы не знаете, что из продуктов относится к углеводам, вы можете обратиться к таблицам, показывающим состав основных продуктов питания.


В суточном рационе углеводные продукты должны составлять примерно 400-500 г. Если вы соблюдаете диету – употребляйте ежедневно не менее 100 г продуктов, содержащих медленные углеводы.

Углеводы – компонент клеток всех живых организмов как растительного, так и животного мира. Хотя в теле человека этих веществ содержится немного – около 1%, представить без них жизнь невозможно. Итак, ? Углеводы — органические соединения, которые вместе с белками и жирами составляют три компонента нашего питания. Главные виды углеводов расщепляются в организме до глюкозы, которая легко всасывается в кровь и действует как топливо для выполнения различных функций.

Какие вещества называются углеводами

Какие вещества называются углеводами? Принято выделять две большие группы углеводов : простые (быстрые) и сложные (медленные или полисахариды). К первой из них относятся: , лактоза, мальтоза, галактоза. Они состоят из небольшого количества структурных компонентов (1-3), легко и быстро усваиваются организмом, поэтому их еще называют быстрыми.

Сложными называют углеводы , цепочки которых состоят из сотен, а порой и тысячи компонентов. Соответственно, расщепляться в организме эти вещества будут медленно – отсюда и название. В эту группу входят крахмал и целлюлоза (клетчатка).

Иногда волокнистые углеводы

(клетчатка) выделяют в особую группу, поскольку они практически не усваиваются организмом. Несмотря на эту особенность их роль в процессе пищеварения велика.

Скорость всасываемости углеводов определяется гликемическим индексом (ГИ). Если быть точнее, то ГИ отражает влияние продукта на степень повышения сахара в крови. Обычно за 100 % принимается глюкоза, реже белый хлеб. Для сравнения у сахарозы этот показатель составляет 58%, а у картофельного крахмала – 70%. Кстати, все простые углеводы обладают высоким гликемическим индексом.

Главный плюс простых углеводов связан именно со скоростью усвоения. С их помощью можно легко восстановить запас энергии в организме. Данное качество очень ценится в спорте и медицине. Вместе с тем высокий уровень сахара в крови вреден для мозга, глаз, почек и печени. Если человек злоупотребляет сладким и мучным, при этом мало двигается, то рискует приобрести опасное заболевание — сахарный диабет. У таких пациентов нарушена функция поджелудочной железы, из-за чего вырабатывается недостаточное количество инсулина, гормона, необходимого для усвоения глюкозы. В результате этой болезни нарушается обмен веществ. Кроме того, пытаясь избавиться от лишнего сахара, организм переводит его в жир. По этой причине ухудшается состояние сосудов, растет

риск инфарктов и инсультов.

Основное преимущество сложных углеводов в том, что для их усвоения требуется больше времени, а значит, сахар будет поступать в кровь постепенно. Поэтому такие углеводы признаны учеными наиболее полезными. Именно по этой причине диетологи рекомендуют употреблять в пищу больше овощей и фруктов, которые и являются сложными углеводами.

Излишек глюкозы преобразуется в гликоген, который откладывается в печени и мышцах, служа энергетическим запасом, который может потребоваться организму во время интенсивных нагрузок. Углеводы являются топливом для центральной нервной системы, мышц. Особое значение эти вещества имеют для клеток головного мозга, поскольку напрямую влияют на сообразительность, память, настроение.

Какие вещества называются углеводами: Добавки с гомогенатом трутневого расплода

Углеводы в оптимальном соотношении содержатся в ряде активных добавок с гомогенатом трутневого расплода «Леветон Форте », и других.

Для активной деятельности человеческий организм должен получать ежедневную норму энергии. Без этого он не сможет выполнять даже простейшие задачи, а это гарантирует проблемы со здоровьем и ухудшение общего самочувствия. Углеводы – это поставщики той самой энергии, незаменимые для нормальной работы всех систем.

Зачем нужны углеводы? Чем грозит их избыток и недостаток, какими они бывают, что относится к углеводам и в каких продуктах они содержатся? Все эти вопросы будут рассмотрены в статье.

Потреблять хотя бы минимальную дневную норму углеводов важно в первую очередь потому, что эти вещества – основной энергетический источник организма. Это первостепенная, но далеко не единственная их функция. Помимо поставки энергии, углеводы выполняют следующие задачи:

  • Участвуют в формировании естественного иммунитета и борьбе с инфекционными заболеваниями
  • Являются составной частью клеточных оболочек
  • Принимают участие в работе ЖКТ, способствуют своевременному выведению шлаков из организма
  • Играют не последнюю роль в процессе синтеза нуклеиновых кислот, жиров, в частности холестерина, и других органических соединений
  • Используются в пищевой и медицинской промышленности

Пренебрегать углеводосодержащей пищей нельзя, особенно людям, чей образ жизни требует постоянного движения и больших затрат энергии. В случае углеводного дефицита в человеческом организме неизбежно возникнут нарушения и появятся неприятные симптомы, а именно:

  • Хроническая усталость, апатия. Не получая достаточно энергии из поступающих углеводов, организм начинает восполнять ее запасы с помощью других соединений – белков и липидов. Это затратный процесс, поэтому даже при нормальном ритме жизни человек будет ощущать себя уставшим. Внимание и концентрация падают, возникают проблемы с памятью.
  • Нестабильность веса. При нехватке углеводов вес первое время будет снижаться за счет потерь воды, но ненадолго. Когда уровень сахара в крови повысится, за работу примется гормон инсулин, отвечающий ко всему прочему за накопление липидных запасов организма. Таким образом, лишние килограммы вернутся снова.
  • Упадок сил. Причина, опять же, в нехватке энергии. Испытывающий углеводный дефицит человек будет уставать постоянно, сколько бы времени на сон и отдых ни тратил.
  • Головные боли. Происходит это по причине недостатка сахара в крови. Когда организм израсходует все свои запасы глюкозы, в дело пойдут жиры, а этот процесс часто сопровождается слабостью и головокружениями.
  • Проблемы со стулом. При нехватке клетчатки работа желудочно-кишечного тракта нарушается, возникают запоры и боли в животе.

Но и сильно превышать норму не следует – это не всегда безопасно. Из-за переизбытка углеводов могут наблюдаться:

  • Гиперактивность
  • Проблемы с концентрацией внимания
  • Дрожь в теле

Все эти симптомы дает излишек сахара. Вдобавок, человека в случае неумеренного потребления углеводов ждет быстрый набор веса – инсулин, борющийся с излишками поступающей глюкозы, будет преобразовывать ее в жир.

Среднесуточная норма углеводов зависит от многих факторов – образа жизни человека, его возраста, массы, внешних условий. Оптимальным вариантом принято считать 300-450г в сутки. Человеку трудоспособного возраста необходимо потреблять около 50г простых углеводов и 300-400г сложных ежедневно.

Больше всего в углеводах нуждаются дети. Растущий организм требует больше энергии, поэтому важно следить, чтобы в рационе ребенка этих веществ было достаточно.

Минимальный уровень суточного потребления углеводов составляет 100г. В случае несоблюдения этого правила в работе организма начинаются серьезные проблемы.

Углеводы подразделяются на две категории, а именно на простые и сложные.

  1. Простые углеводы. Их относят к моносахаридам и дисахаридам; этой группе принадлежат всем известные сахароза и фруктоза. Структура простых углеводов несложная, из-за чего они и получили такое название. Они быстро расщепляются в организме и моментально попадают в кровь, насыщая ее энергией. К простым углеводам относятся:
  • Сахароза . Свекловичный сахар, которой способен под воздействием кислоты или фермента гидролизоваться на фруктозу и глюкозу. Сахароза имеется в составе всех растений, особенно много ее содержится в сахарном тростнике и свекле. Наиболее привычный и доступный ее источник – обыкновенный сахар.
  • Фруктоза. Плодовый сахар, в свободном виде содержится в некоторых плодах и фруктах, пчелином меде. Фруктоза участвует в процессе обмена веществ и углеводном синтезе.
  • Глюкоза. Виноградный сахар, необходим для снабжения живых клеток энергией. Глюкоза часто используется в кондитерском производстве, содержится в спелых фруктах, ягодах, виноградном соке.
  • Мальтоза . Солодовый сахар, расщепляется с образованием двух молекул глюкозы. Легко усваивается организмом, в больших количествах ее можно найти в пророщенных зернах.
  1. Сложные углеводы. Состоят из моносахаридов и имеют более сложное строение, чем простые углеводы. Попадая в организм, они расщепляются и всасываются медленнее, поэтому уровень глюкозы в крови повышается постепенно. Сложные углеводы поддерживают тонус организма и нормализуют работу ЖКТ, а также дают ощущение сытости на долгое время. Среди них можно выделить:
  • Крахмал. Образуется в растениях и отличается низкой калорийностью. Стимулирует обменные процессы организма, контролирует уровень сахара в крови, положительно влияет на иммунитет. Особенно его в некоторых крупах и картофеле.
  • Клетчатка. Представляет собой грубые волокна, содержится в овощах, фруктах, бобовых. Улучшает работу кишечника, однако усваивается плохо и почти полностью выводится из организма.
  • Гликоген. Это запасной углевод животных и человека. Насыщает кровь глюкозой, необходим для построения мышц. Много крахмала содержится в грибах, дрожжах и сахарной кукурузе.
  • Пектины. Помогают организму избавляться от ядов и токсичных веществ, связывают и выводят излишки холестерина, образующегося в печени. В большом количестве имеются в яблоках, кишечником практически не перевариваются.

В процессе окисления углеводы расщепляются и перерабатываются до глюкозы. В кровь выбрасывается сахар, причем его количество зависит от объема и качества съеденной углеводосодержащей пищи. Чем проще углевод, тем больше сахара поступит в организм во время его распада.

Повышенное содержание сахара провоцирует выработку гормона инсулина. Он распределяет энергию между клетками, а ее избыток запасается организмом в печени. После потребления углеводов уровень сахара будет падать и в течение нескольких часов придет в норму.

По степени усвояемости углеводы подразделяются на три группы:

  • Быстроусвояемые
  • Медленноусвояемые
  • Неусвояемые

Растительные углеводы тоже можно разделить на категории:

  • Перевариваемые
  • Неперевариваемые

К последним относят крахмал, целлюлозу и пектины. Поставляет энергию только крахмал, действие пектинов и целлюлозы направлено на выведение из организма шлаков и токсинов.

Важно знать, какие продукты относятся к белкам и жирам, а какие – к углеводам, чтобы еда с правильными ингредиентами составляла ваш рацион и обеспечивала здоровое питание.

И сложные, и простые углеводы по-своему важны. Простые представители рекомендуются в случае, когда нужно в короткий срок восстановить силы после тяжелой физической нагрузки – например, тренировки. Мгновенный выброс сахара в кровь даст организму необходимую энергию. Лучше всего подойдет пища, богатая моносахаридами и дисахаридами, к примеру, мед или шоколад.

Сложные углеводы подойдут в том случае, если работа займет долгий промежуток времени. Они будут усваиваться медленнее и дадут ощущение сытости на несколько часов.

При похудении будет лучше ограничиться только сложными углеводами – много сахара в организме помешает избавлению от лишнего веса. И стоит помнить, что простые углеводы большом количестве опасны и могут принести вред организму.

Этот макронутриент входит в состав самых разнообразных продуктов питания. Но не все они одинаково полезны, поэтому важно уметь классифицировать продукты богатые углеводами, чтобы питаться правильно. Сложных углеводов в рационе должно быть в шесть-семь раз больше, чем простых.

Простые углеводы содержат:

  • Кондитерские изделия
  • Алкогольные напитки
  • Сладкие газированные и негазированные напитки
  • Сахар
  • Шоколад
  • Джемы, варенье
  • Глюкозные сиропы
  • Хлебобулочные изделия
  • Сладкие консервы
  • Сухофрукты
  • Практически любой фастфуд
  • Мороженое
  • Компоты
  • Компоты
  • Тыква
  • Сахарная свекла
  • Мюсли
  • Почти все виды фруктов
  • Почти все виды ягод

К продуктам с содержанием сложных углеводов относятся.

1. Какие вещества, относящиеся к углеводам, вам известны?

Глюкоза, фруктоза, крахмал, целлюлоза, хитин.

2. Какую роль играют углеводы в живом организме?

Углеводы представляют собой важнейшие источники энергии, необходимой для жизнедеятельности организмов.

3. В результате какого процесса углеводы образуются в клетках зелёных растений?

Углеводы образуются в клетках зелёных растений в результате фотосинтеза.

Вопросы

1. Какой состав и строение имеют молекулы углеводов?

Углеводы состоят из углерода, водорода и кислорода. У большинства из них соотношение водорода и кислорода в молекуле такое же, как и в молекуле воды.

Все углеводы делятся на простые, или моносахариды, и сложные, или полисахариды. Ди- и полисахариды образуются путём соединения двух и более молекул моносахаридов. Так, сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) - дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов.

2. Какие углеводы называются моно-, ди- и полисахаридами? 3. Какие функции выполняют углеводы в живых организмах?

Все углеводы делятся на простые, или моносахариды, и сложные, или полисахариды. Из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.

Ди- и полисахариды образуются путём соединения двух и более молекул моносахаридов. Так, сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) - дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов. Дисахариды по своим свойствам близки к моносахаридам. Например, и те и другие хороню растворимы в воде и имеют сладкий вкус.

Полисахариды состоят из большого числа моносахаридов. К ним относятся крахмал, гликоген, целлюлоза, хитин и др. С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.

Основная функция углеводов - энергетическая. При расщеплении и окислении молекул углеводов выделяется энергия (при распаде 1 г углеводов - 17,6 кДж), которая обеспечивает жизнедеятельность организма.

При избытке углеводов они накапливаются в клетке в качестве запасных веществ (крахмал, гликоген) и при необходимости используются организмом в качестве источника энергии.

Углеводы используются и в качестве строительного материала.

Некоторые полисахариды входят в состав клеточных мембран и служат рецепторами, обеспечивая узнавание клетками друг друга и их взаимодействие.

Задания

Проанализируйте рисунок 6 «Схема строения полисахаридов» и текст параграфа. Какие предположения вы можете выдвинуть на основе сравнения особенностей строения молекул и функций, выполняемых крахмалом, гликогеном и целлюлозой в живом организме? Обсудите этот вопрос с одноклассниками.

Строение представленных на рисунке молекул углеводов позволяет им выполнять определенные функции.

Полимерные цепочки крахмала и гликогена позволяют им накапливаться в клетке в качестве запасных веществ (т.к. они компактные за счет способности изгибаться и свертываться) и при необходимости использоваться организмом в качестве источника энергии.

Строение молекул целлюлозы (длинные прямолинейные цепи) делает их как нельзя лучше приспособленными для использования в качестве строительного материала (целлюлоза является важным структурным компонентом клеточных стенок многих одноклеточных, грибов и растений).

Решили следить за питанием, за соотношением белков, жиров и углеводов? Про белки и жиры, когда-то слышали, а вот что относится к углеводам? С чем их есть? Откуда достать? Какие продукты содержат простые углеводы, а какие – сложные, это мы разберем в статье.

Доброго времени суток, друзья. С вами Светлана Морозова. Чтобы выстроить здоровый и сильный организм, который и в преклонные годы будет хоть куда, надо знать, из чего строить. И сегодня мы снова поговорим . А именно, про углеводы.

Друзья! Я, Светлана Морозова, приглашаю вас на мега полезные и интересные вебинары! Ведущий, Андрей Ерошкин. Эксперт по восстановлению здоровья, дипломированный диетолог.

Темы предстоящих вебинаров:

  • Как похудеть без силы воли и чтобы вес не вернулся снова?
  • Как снова стать здоровым без таблеток, естественным способом?
  • Откуда берутся камни в почках и что делать, чтобы они не появлялись снова?
  • Как перестать ходить по гинекологам, родить здорового ребёнка и не состариться в 40 лет?

Углеводный бум

Итак, что относится к углеводам? Давайте вспомним школьные уроки химии. Даже если хотелось бы забыть. Все мы учили, что углеводы делят на простые и сложные, или быстрые и медленные. Это зависит от строения молекулы. Сложные углеводы при переваривании распадаются на простые, поэтому перевариваются дольше. Разберем, что к чему относится:

  • Простые углеводы . Они быстро расщепляются и дают нам энергию здесь и сейчас. Но этого эффекта хватает ненадолго. К тому же, простые углеводы резко повышают сахар в крови. Это значит, что слишком частое их употребление нарушает . Так начинаются , даже нарушения .
Что относится к быстрым углеводам:
  • Моносахариды — одна молекула сахара: глюкоза, фруктоза, галактоза, манноза.
  • Олигосахариды – среди них больше всего дисахаридов, которые состоят из двух молекул сахара: лактоза, сахароза, мальтоза, целлобиоза.

Отлично подойдет в качестве перекуса, если надо экстренно подзарядиться перед экзаменом, выступлением.

  • Сложные углеводы. Перевариваются достаточно долго, и энергии от них хватает надолго. При этом их гликемический индекс (показывает, с какой скоростью углевод распадается до глюкозы) низкий. То есть, по уровню сахара в крови это не бьёт.

Сюда относятся полисахариды, в них несколько молекул сахаров. Что входит сюда: крахмал, гликоген, целлюлоза, клетчатка, хитин.

Что мы едим: где находятся углеводы

Ежедневно в пище мы получаем много углеводов. Какие продукты содержат простые углеводы, а какие – сложные, это мы разберем в списке.

Простые:
  • Сахар.
  • Кондитерские изделия, сладости: шоколад, пончики, вафли, печенья, торты, халва, зефир.
  • Белый хлеб, сдобная выпечка.
  • Соки, компоты, варенье, сиропы.
  • Сухофрукты.
  • Сладкие фрукты: яблоки, персики, цитрусовые, груши.
  • Ягоды: виноград, арбуз, клубника (сладкие).
  • Вино, пиво, квас, газировка.
Сложные:
  • Крупы, злаки, отруби.
  • Овощи: картошка, капуста, морковь, свекла.
  • Макароны, хлеб из муки грубого помола.
  • Бобовые.

Что относится к углеводам и зачем они вообще?

Я знаю, многие считают, что быстрые углеводы вредные, а вот медленные – наоборот. Вовсе нет, бывает, что низкий гликемический индекс – еще не показатель полезности. Например, у арбуза в котором много простых углеводов, этот индекс высокий, а калорийность маленькая и он не повышает глюкозу в крови. А вот у картофеля или тех же макарон – всё наоборот.

Сейчас очень популярно мнение, что если хочешь похудеть, то углеводную пищу и в рот не бери. Это в корне неверно. Почему?

Давайте разберем, что же дают нам углеводы:
  • Энергия. Это самая главная функция. Именно запасы гликогена в мышцах и печени, а также свободная глюкоза в крови снабжают нас энергией. Если углеводная пища у нас в дефиците, сначала мы ощущаем слабость физическую, а потом и умственную. Рассеянность, несобранность, плохая память, ум не такой уж острый. Поэтому, кстати, барышни, которые так фанатеют от всевозможного рода диет, чаще всего ведут себя заторможено и очень типично.
  • Строительство клеток. Углеводы входят в состав ДНК и РНК, костей, хрящей, основывают клеточные мембраны и ферменты.
  • Защита. Всё то слизистое, которое в нас есть, тоже содержит углеводы. Оболочки дыхательных, пищеварительных путей, мочеполовой системы. Во-первых, они служат барьером для инфекции, во-вторых, играют роль своеобразной подушки безопасности, защищая от механических травм.
  • Пищеварение. Клетчатка, сложный углевод, не переваривается. Совсем. Поэтому она приводит в тонус , улучшает его работу, помогает пище продвигаться и перевариваться. Плюс ферменты на основе углеводов – некоторые тоже пищеварительные.
  • Регуляция процессов. Во-первых, это антикоагулирующая функция (против образования тромбов и свёртывания крови тогда, когда не нужно). Во-вторых, остановка развития опухоли. В-третьих, некоторые углеводы взаимодействуют с гормонами и лекарственными веществами, помогают им поступать в нужное место.

Похуденческий фактор

Подозреваю, что основной контингент читателей этой статьи – люди, которые хотят знать, как питаться, чтобы похудеть.

Открываю все белково-углеводно-жировые секреты:

1.Углеводам – быть. В чем секрет здорового похудения, думаю все знают. Но хочу напомнить лишний раз, потому что это – самое главное. . Все наши попытки снизить вес показывают, что обмен веществ был нарушен, раз лишний вес-таки набран. Наша задача – восстановить обменные процессы. Поэтому, есть мы должны всё. Ни в коем случае не бросаемся грудью на амбразуру, не садимся на однобокие , где требуют полностью отказаться от углеводов. Или жиров, Вопрос только в соотношении БЖУ и калорий.

  • Ежедневная норма. Сколько в день вы должны съедать углеводного:
  • Если худеете, то ваша норма – 150-200 г углеводов.
  • Если вы просто хотите питаться правильно, не изменяя вес, норма для вас – 300-400 г.

Вы – заядлый спортсмен, ну, или работа у вас изматывающая физически, нужно есть от 500 г ежедневно и больше.

2. Простые углеводы – не изгои. Нельзя отказываться от них полностью. Конечно, основа – это то, что богато сложными углеводами – клетчаткой и пектином, т. е. преимущество должно быть у злаков и овощей. Но простых должно быть не меньше четверти от всего количества углеводов.

3. БЖУ. К жирам и белкам тоже относимся внимательно. Если перед вами встал выбор, что лучше урезать, углеводы или белки, то белков лучше пусть будет немного больше. На 5-10%.

  • для мужчин, которые занимаются в спортзале, пропорции Б/Ж/У - 30/20/60;
  • для женщин, которые хотят похудеть- 50/20/30;
  • для женщин, с лишним весом около 10 кг- 60/15/25;
  • для полных мужчин- 50/20/30.

Это что касается рациона за весь день. За один приём пищи углеводы лучше и кислыми продуктами, а то будут мешать друг другу усвоиться.

Разобраться с тем, сколько грамм углеводов где содержится, вам поможет таблица.

Ну, что друзья мои. Надеюсь, полностью утолила ваш информационный голод касательно углеводов.

Подпишитесь, чтобы не пропустить обновления блога. И делитесь с друзьями в соцсетях понравившимися статьями.

углеводы — урок. Биология, Общие биологические закономерности (9–11 класс).

Углеводы, или сахариды, — одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов.

Основная функция углеводов — энергетическая (при расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма). При избытке углеводов они накапливаются в клетке в качестве запасных веществ (крахмал, гликоген) и при необходимости используются организмом в качестве источника энергии. Углеводы также используются и в качестве строительного материала.

 

Общая формула углеводов:

Cn(h3O)m.

Углеводы состоят из углерода, водорода и кислорода.

В состав производных углеводов могут входить и другие элементы.

 

Растворимые в воде углеводы. Моносахариды и дисахариды

Пример:

из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.

Глюкоза — основной источник энергии для клеточного дыхания.

Фруктоза — составная часть нектара цветов и фруктовых соков.

Рибоза и дезоксирибоза — структурные элементы нуклеотидов, являющихся мономерами нуклеиновых кислот (РНК и ДНК).
Дисахариды образуются путём соединения двух молекул моносахаридов и по своим свойствам близки к моносахаридам. Например, и те и другие хорошо растворимы в воде и имеют сладкий вкус.

Пример:

сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) — дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов:

сахароза (глюкоза \(+\) фруктоза) — основной продукт фотосинтеза, транспортируемый в растениях.

Лактоза (глюкоза \(+\) галактоза) — входит в состав молока млекопитающих.

Мальтоза (глюкоза \(+\) глюкоза) — источник энергии в прорастающих семенах.

Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.

Нерастворимые в воде полисахариды

Полисахариды состоят из большого числа моносахаридов. С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.

 

Пример:

полимерные углеводы: крахмал, гликоген, целлюлоза, хитин.

Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.
Крахмал состоит из разветвлённых спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза является важным структурным компонентом клеточных стенок грибов и растений.

Целлюлоза нерастворима в воде и обладает высокой прочностью.

Хитин состоит из аминопроизводных глюкозы, входит в состав клеточных стенок некоторых грибов и формирует наружный скелет членистоногих животных.
Гликоген — резервный углевод животной клетки.

В состав соединительных тканей животных входят сложные полисахариды. Они содержатся в межклеточном веществе кожи, в хрящах и сухожилиях.

Источники:

http://www.bestreferat.ru/referat-100195.html

Органические вещества. Углеводы. Белки



Вспомните!

Какие вещества называют биологическими полимерами?

Это полимеры – высокомолекулярные соединения, входящие в состав живых организмов. Белки, некоторые углеводы, нуклеиновые кислоты.

Каково значение углеводов в природе?

Широко распространена в природе фруктоза — фруктовый сахар, который значительно слаще других сахаров. Этот моносахарид придаёт сладкий вкус плодам растений и мёду. Самый распространённый в природе дисахарид — сахароза, или тростниковый сахар, — состоит из глюкозы и фруктозы. Её получают из сахарного тростника или сахарной свёклы. Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии. Целлюлоза и хитин выполняют в организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.

Назовите известные вам белки. Какие функции они выполняют?

Гемоглобин – белок крови, транспорт газов в крови

Миозин – белок мышц, сокращение мышц

Коллаген – белок сухожилий, кож, эластичность, растяжимость

Казеин – белок молока, питательное вещество

Вопросы для повторения и задания

1. Какие химические соединения называют углеводами?

Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5% сухой массы, а в некоторых растительных (например, клуб ни картофеля) их содержание достигает 90% сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.

2. Что такое моно- и дисахариды? Приведите примеры.

Моносахариды состоят из мономеров, низкомолекулярные органические вещества. Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Самый распространенный моносахарид – глюкоза. Глюкоза присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Самый распространённый в природе дисахарид — сахароза, или тростниковый сахар.

3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?

Глюкоза

4. Из каких органических соединений состоят белки?

Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи. Две полипептидные цепи, из которых состоит гормон поджелудочной железы — инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин — белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий её прочность, состоит из трёх полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.

5. Как образуются вторичная и третичная структуры белка?

Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации — вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль. Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.

6. Назовите известные вам функции белков. Чем вы можете объяснить существующее многообразие функций белков?

Одна из основных функций белков – ферментативная. Ферменты – это белки-катализаторы, ускоряющие химические реакции в живых организмах. Ферментативная реакция – это химическая реакция, протекающая только при наличии фермента. Без фермента не протекает не одна реакции в живых организмах. Работа ферментов строго специфична, у каждого фермента свой субстрат, который он расщепляет. Фермент подходит к своему субстрату как «ключ к замку». Так, фермент уреаза регулирует расщепление мочевины, фермент амилаза – крахмала, а ферменты протеазы – белки. Поэтому для ферментов применяют выражение «специфичность действия».

Белки выполняют и другие разнообразные функции в организмах: структурная, транспортная, двигательная, регуляторная, защитная, энергетическая. Функции белков довольно многочисленны, так как лежат в основе многообразия проявления жизни. Это компонент биологических мембран, перенос питательных веществ, например, гемоглобин, работа мышц, гормональная функция, защита организма – работа антигенов и антител, и прочие важнейшие функции в организме.

7. Что такое денатурация белка? Что может явиться причиной денатурации?

Денатурация – это нарушения третичной пространственной структуры белковых молекул под действием различных физических, химических, механических и других факторов. Физические факторы – это температура, излучение, Химические факторы – это действие на белки любых химических веществ: растворители, кислоты, щелочи, концентрированные вещества и прочее. Механические факторы – встряхивание, давление, растяжение, скручивание и прочее.

Подумайте! Вспомните!

1. Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.

Так как в основе жизни – питания растений лежит фотосинтез, это процесс образования сложных органических соединений углеводов из более простых неорганических углекислого газа и воды. Основной углевод синтезируемый растения для воздушного питания – глюкоза, также это может быть крахмал.

2. К каким заболеваниям может привести нарушение превращения углеводов в организме человека?

Регуляция углеводного обмена в основном осуществляется гормонами и центральной нервной системой. Глюкокортикостероиды (кортизон, гидрокортизон) тормозят скорость транспорта глюкозы в клетки тканей, инсулин ускоряет его; адреналин стимулирует процесс сахарообразования из гликогена в печени. Коре больших полушарий также принадлежит определенная роль в регуляции углеводного обмена, так как факторы психогенного характера усиливают образование сахара в печени и вызывают гипергликемию.

О состоянии углеводного обмена можно судить по содержанию сахара в крови (в норме 70—120 мг%). При сахарной нагрузке эта величина возрастает, но затем быстро достигает нормы. Нарушения углеводного обмена возникают при различных заболеваниях. Так, при недостатке инсулина наступает сахарный диабет.

Понижение активности одного из ферментов углеводного обмена — мышечной фосфорилазы — ведет к мышечной дистрофии.

3. Известно, что, если в рационе отсутствует белок, даже несмотря на достаточную калорийность пищи, у животных останавливается рост, изменяется состав крови и возникают другие патологические явления. Какова причина подобных нарушений?

В организме всего 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала, они образуют разные белковые молекулы, если не употреблять белки, например, незаменимые, которые не могут в организме образовываться самостоятельно, а должны потребляться с пищей. Таким образом, если не есть белки, не смогут образовываться многие белковые молекулы внутри самого организма и возникнуть патологические изменения. Рост контролируется ростом костных клеток, основной любой клетки является белок; гемоглобин основной белок крови, который обеспечивает перенос основных газов в организме (кислород, углекислый газ).

4. Объясните трудности, возникающие при пересадке органов, опираясь на знания специфичности белковых молекул в каждом организме.

Белки являются генетическим материалом, так как в них записана структура ДНК и РНК организма. Тем самым белки имеют генетические особенности у каждого организма, в них зашифрована информация генов, в этом заключается трудность при пересадке от чужих (неродственных) организмов, так как у них различные гены, а значит и белки.

5. Оцените содержание белков, жиров и углеводов в продуктах питания (на основании данных, представленных на этикетках).

2.5 Органические вещества. Углеводы. Белки

Вопрос 1. Какие химические соединения назы­вают углеводами?

Углеводы — это обширная группа природ­ных органических соединений. Углеводы под­разделяют на три основных класса: моносаха­риды, дисахариды и полисахариды. Дисахарид представляет собой соединение двух моносаха­ридов; полисахариды являются полимерами моносахаридов. Углеводы выполняют в живых организмах энергетическую, запасающую и строительную функции. Последняя особенно важна для растений, клеточная стенка которых в основном состоит из полисахарида целлюло­зы. Именно углеводы древних живых существ (прокариотов и растений) стали основой для об­разования ископаемого топлива — нефти, газа, угля.

Вопрос 2. Что такое моно- и дисахариды? При­ведите примеры.

Моносахариды — это углеводы, количест­во атомов углерода (n) в которых относительно невелико (от 3 до 6-10). Моносахариды обыч­но существуют в циклической форме; наибо­лее важны среди них гексозы (n = 6) и пентозы (n = 5). К гексозам относится глюкоза, кото­рая является важнейшим продуктом фотосин­теза растений и одним из основных источни­ков энергии для животных; широко распрост­ранена также фруктоза — фруктовый сахар, придающий сладкий вкус плодам и меду. Пен­тозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Если в одной молекуле объединяются два моносахарида, такое соеди­нение называют дисахаридом. Составные части (мономеры) дисахарида могут быть оди­наковыми либо разными. Так, две глюкозы об­разуют мальтозу, а глюкоза и фруктоза — са­харозу. Мальтоза является промежуточным продуктом переваривания крахмала; сахаро­за — тем самым сахаром, который можно ку­пить в магазине.

Вопрос 3. Какой простой углевод служит моно­мером крахмала, гликогена, целлюлозы?

Моносахариды, соединяясь друг с другом, могут образовывать полисахариды. Наиболее распространенные полисахариды (крахмал, гликоген, целлюлоза) представляют собой длинные цепи особым образом соединенных молекул глюкозы. Глюкоза является гексозой (химическая формула С6Н1206) и обладает не­сколькими ОН-группами. За счет установле­ния связей между ними отдельные молекулы глюкозы способны формировать линейные (целлюлоза) либо ветвящиеся (крахмал, гли­коген) полимеры. Средний размер такого по­лимера — несколько тысяч молекул глюкозы.

Вопрос 4. Из каких органических соединений состоят белки?

Белки — это гетерополимеры, состоящие из 20 типов аминокислот, соединенных между собой особыми, так называемыми, пептидны­ми связями. Аминокислоты — органические молекулы, имеющие общий план строения: атом углерода, соединенный с водородом, кис­лотной группой (-СООН), аминогруппой (-NH2) и радикалом. Разные аминокислоты (каждая имеет свое название) различаются лишь строением радикала. Образование пеп­тидной связи происходит за счет соединения кислотной группы и аминогруппы двух ами­нокислот, расположенных рядом в молекуле белка.

Вопрос 5. Как образуются вторичная и третич­ная структуры белка?

Цепь аминокислот, составляющая основу молекулы белка, является его первичной структурой. Между положительно заряжен­ными аминогруппами и отрицательно заря­женными кислотными группами аминокис­лот возникают водородные связи. Образование этих связей вызывает сворачивание белковой молекулы в спираль.

Белковая спираль — вторичная структура белка. На следующем этапе за счет взаимодей­ствий между радикалами аминокислот белок сворачивается в клубок (глобулу) или нить (фибриллу). Такую структуру молекулы назы­вают третичной; именно она является биоло­гически активной формой белка, обладающей индивидуальной специфичностью и опреде­ленной функцией.

Вопрос 6. Назовите известные вам функции белков.

Белки выполняют в живых организмах чрезвычайно разнообразные функции.

Одна из самых многочисленных групп бел­ков — ферменты. Они выполняют функцию катализаторов химических реакций и уча­ствуют во всех биологических процессах.

Многие белки выполняют структурную функцию, участвуя в образовании мембран и органоидов клетки. Белок коллаген входит в состав межклеточного вещества костной и со­единительной ткани, а кератин является ос­новным компонентом волос, ногтей, перьев.

Сократительная функция белков обес­печивает организму возможность двигаться посредством сокращения мышц. Эта функция присуща таким белкам, как актин и миозин.

Транспортные белки связывают и пере­носят различные вещества как внутри клетки, так и по всему организму. К ним относится, например, гемоглобин, который транспорти­рует молекулы кислорода и углекислого газа.

Белки-гормоны обеспечивают регулятор­ную функцию. Белковую природу имеет гор­мон роста (его избыток у ребенка приводит к гигантизму), инсулин, гормоны, регулирую­щие работу почек, и др.

Чрезвычайно важны белки, выполняющие защитную функцию. Иммуноглобулины (антитела) — основные участники иммунных реакций; они защищают организм от бактерий и вирусов. Фибриноген и ряд других белков плазмы крови обеспечивают свертывание кро­ви, останавливая кровопотерю.

Энергетическую функцию белки начи­нают выполнять при их избытке в пище либо, напротив, при сильном истощении клеток. Ча­ще мы наблюдаем, как пищевой белок, перева­риваясь, расщепляется до аминокислот, из ко­торых затем создаются белки, необходимые организму.

Вопрос 7. Что такое денатурация белка? Что может явиться причиной денатурации?

Денатурация — это утрата белковой мо­лекулой своего нормального («природного») строения: третичной, вторичной и даже пер­вичной структуры. При денатурации белко­вый клубок и спираль раскручиваются; водо­родные, а затем и пептидные связи разруша­ются. Денатурированный белок не способен выполнять свои функции. Причинами денату­рации являются высокая температура, ультра­фиолетовое излучение, действие сильных кис­лот и щелочей, тяжелых металлов, органиче­ских растворителей. Примером денатурации служит варка куриного яйца. Содержимое сы­рого яйца жидкое и легко растекается. Но уже через несколько минут нахождения в кипятке оно меняет свою консистенцию, уплотняется. Причина — денатурация яичного белка альбу­мина: его клубковидные, растворимые в воде молекулы-глобулы раскручиваются, а затем соединяются друг с другом, образуя жесткую сеть.

2.5 Органические вещества. Углеводы. Белки

4.7 (93.33%) 3 votes
На этой странице искали :
  • какие химические соединения называют углеводами
  • какой простой углевод служит мономером крахмала гликогена целлюлозы
  • из каких простых органических соединений состоят белки
  • из каких органических соединений состоят белки
  • что такое моно и дисахариды приведите примеры

Сохрани к себе на стену!

Углеводы. Ответим на вопросы… 1. Какие вещества

Углеводы.

Ответим на вопросы… 1. Какие вещества называются липидами? 2. Охарактеризуйте классификацию липидов. 3. Охарактеризуйте свойства липидов. 4. Охарактеризуйте функции липидов.

I. Понятие «углевод» Общая формула: С n ( H 2 O ) m , где n и m переменные. С 6 ( H 2 O ) 6 С 6 H 12 O 6 глюкоза

I. Понятие «углевод» Углеводы (сахара) — органические соединения, состоящие из углерода, водорода и кислорода, причём водород и кислород входят в их состав в соотношении 2: 1

II. Разнообразие углеводов 1. Простые сахара – моносахариды. а) глюкоза ( виноградный сахар )– в крови 0, 1 – 0, 12%, служит источником энергии для клеток и тканей организма

II. Разнообразие углеводов. б) рибоза и дезоксирибоза – входят в состав нуклеиновых кислот и АТФ, витаминов группы В и некоторых ферментов ( рибозимы -молекулы РНК )

II. Разнообразие углеводов в) фруктоза – содержится во фруктах

II. Разнообразие углеводов. г) галактоза – пространственный изомер глюкозы, в печени и других органах превращается в глюкозу глюкоза галактоза

II. Разнообразие углеводов 2. Олигосахариды – углеводы, имеющие короткую полимерную цепочку. Дисахариды – молекулы, объединяю- щие два моносахарида (два мономера)

II. Разнообразие углеводов А) сахароза ( пищевой сахар ) = 1 мол. Глюкозы + 1 мол. Фруктозы

II. Разнообразие углеводов. Б) лактоза ( молочный сахар ) = 1 мол. Глюкозы + 1 мол. галактозы

II. Разнообразие углеводов. В) мальтоза (солодовый сахар ) =1 мол. Глюкозы + 1 мол. Глюкозы

II. Разнообразие углеводов. 3. Трисахариды - молекулы, объединяющие три моносахарида ( три мономера ) А) мальтотриоза - состоит из трех молекул глюкозы

II. Разнообразие углеводов Б) рафиноза (раффиноза) — состоит из остатков D-галактозы D-глюкозы D-фруктозы.

II. Разнообразие углеводов Свойства моно-, ди- и трисахаридов: - сладкий вкус - хорошо растворимы в воде

II. Разнообразие углеводов 4. Сложныесахара – полисахариды, полимерные биомолекулы, т. е. состоят из большого числа мономеров ( простых сахаров ) от 10 до 10 000 единиц.

II. Разнообразие углеводов а) целлюлоза ( мономер глюкоза ) Хлопковая целлюлоза микрокристаллическая целлюлоза

Целлюлоза

II. Разнообразие углеводов б) крахмал ( мономер глюкоза ) Картофельный крахмал

II. Разнообразие углеводов б) гликоген ( мономер глюкоза ) Гликоген в клетках печени

II. Разнообразие углеводов в) хитин ( мономер ацетилглюкозамин ) Хитиновый покров

II. Разнообразие углеводов Свойства полисахаридов: - с увеличением числа мономеров уменьшается растворимость в воде, некоторые полисахариды способны набухать и ослизняться -не имеют сладкого вкуса.

III. Функции углеводов 1. Энергетичесая – основной источник энергии - 1 гр. 17, 6 к. Дж энергии 2. Структурная Целлюлоза – в составе клеточных оболочек растений Хитин – структурный компонент покровов членистоногих и клеточных стенок грибов.

III. Функции углеводов 3. Запасающая – при избытке углеводов накапливаются в клетке в качестве запасных веществ и при необходимости используются как источник энергии ( крахмал, гликоген )

III. Функции углеводов. 4. Защитная – А) камеди – смолы лиственных пород деревьев ( производные моносахаридов ) Б) гепарин – ингибитор свёртывания крови В) хитин – покровы членистоногих Г) целлюлоза – клеточные стенки растительных клеток

III. Функции углеводов. 5. Рецепторная ( сигнальная ) – гликолипиды, клеточные рецепторы – входящих в состав клеточной мембраны 6. Метаболическая – монасахариды участвуют в синтезе полисахаридов, нуклеотидов ( составных частей РНК и ДНК), АТФ

Вспомним… 1. Какие химические соединения называют углеводами? 2. На какие группы можно поделить углеводы в зависимости от строения молекулы? 3. Какие функции выполняют углеводы в живых организмах?

Хитин

Крахмал

Гликоген

Камеди Камедь

Гепарин

Гликолипид

Органические вещества. Углеводы. Белки | Параграф 2. 5

 "Биология. Общая биология. Базовый уровень. 10-11 классы". В.И. Сивоглазов (гдз)

 

 

 

Вопрос 1. Какие химические соединения называют углеводами?
Углеводы - большая группа органических соединений, входящих в состав живых клеток. Термин "углеводы" введен впервые отечественным ученым К.Шмидтом в середине прошлого столетия (1844 г.). В нем отражены представления о группе веществ, молекула которых отвечает общей формуле: Сn(Н2О)n -углерод и вода.
Углеводы принято делить на 3 группы: моносахариды (например, глюкоза, фруктоза, манноза), олигосахариды (включают от 2 до 10 остатков моносахаридов: сахароза, лактоза), полисахариды (высокомолекулярные соединения, например, гликоген, крахмал).
Углеводы выполняют две основные функции: строительную и энергетическую. Например, целлюлоза образует стенки растительных клеток: сложный полисахарид хитин — главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г углеводов освобождается
17,6 кДж энергии. Крахмал у растенийй и гликоген у животных, откладываясь в клетках, служит энергетическим резервом.
Именно углеводы древних живых существ (прокариотов и растений) стали основой для образования ископаемого топлива — нефти, газа, угля.

Вопрос 2. Что такое моно- и дисахариды? Приведите примеры.
Моносахариды — это углеводы, количество атомов углерода (n) в которых относительно невелико (от 3 до 6—10). Моносахариды обычно существуют в циклической форме; наиболее важны среди них гексозы
(n = 6) и пентозы (n = 5). К гексозам относится глюкоза, кото¬nрая является важнейшим продуктом фотосинтеза растений и одним из основных источников энергии для животных; широко распространена также фруктоза — фруктовый сахар, придающий сладкий вкус плодам и меду. Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Тетрозы содержат 4 (n = 4), а триозы, соответственно, 3(n =3) атомов углерода. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Составные части (мономеры) дисахарида могут быть одинаковыми либо разными. Так, две глюкозы образуют мальтозу, а глюкоза и фруктоза — сахарозу. Мальтоза является промежуточным продуктом переваривания крахмала; Сахароза — тем самым сахаром, который можно купить в магазине.
Все они хорошо растворимы в воде и растворимость их значительно увеличивается с повышением температуры.

Вопрос 3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?
Моносахариды, соединяясь друг с другом, могут образовывать полисахариды. Наиболее распространенные полисахариды (крахмал, гликоген, целлюлоза) представляют собой длинные цепи особым образом соединенных молекул глюкозы. Глюкоза является гексозой (химическая формула С6Н12О6) и обладает несколькими —ОН - группами. За счет установления связей между ними отдельные молекулы глюкозы способны формировать линейные (целлюлоза) либо ветвящиеся (крахмал, гликоген) полимеры. Средний размер такого полимера — несколько тысяч молекул глюкозы.

Вопрос 4.Из каких органических соединений состоят белки?
Белки - высокомолекулярные полимерные органические вещества, определяющие структуру и жизнедеятельность клетки и организма в целом. Структурной единицей, мономером их биополимерной молекулы является аминокислота. В образовании белков принимают участие 20 аминокислот. В состав молекулы каждого белка входят определенные аминокислоты в свойственном этому белку количественном соотношении и порядке расположения в полипептидной цепи. Аминокислоты — органические молекулы, имеющие общий план строения: атом углерода, соединенный с водородом, кислотной группой (—СООН), аминогруппой
(—NН2) и радикалом. Разные аминокислоты (каждая имеет свое название) различаются лишь строением радикала. Аминокислоты - амфотерные соединения, соединяющиеся друг с другом в молекуле белка с помощью пептидных связей. Этим обусловлена их способность взаимодействовать друг с другом. Две аминокислоты соединяются в одну молекулу путем установления связи между углеродом кислотной и азотом основной групп (— NH — СО —) с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксильной группой другой ковалентная. В данном случае она называется пептидной связью.
Соединение двух аминокислот называется дипептидом, трех — трипептидом и т. д., а соединение, состоящее из 20 аминокислотных остатков и более, — полипептидом.
Белки, входящие в состав живых организмов, включают сотни и тысячи аминокислот. Порядок их соединения в молекулах белков самый разнообразный, чем и определяется различие их свойств.

Вопрос 5. Как образуются вторичная и третичная структуры белка?
Порядок, количество и качество аминокислот, входящих в состав молекулы белка, определяют его первичную структуру (например, инсулин). Белки первичной структуры могут с помощью водородных связей соединяться в спираль и образовывать вторичную структуру (например, кератин). Многие белки, например коллаген, функционируют в форме закрученной спирали. Полипептидные цепи, скручиваясь определенным образом в компактную структуру, образуют глобулу (шар), представляющую собой третичную структуру белка. Замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате способности к участию в биохимических реакциях. Большинство белков имеют третичную структуру. Аминокислоты активны только на поверхности глобулы.

Вопрос 6. Назовите известные вам функции белков.
Белки выполняют следующие функции:
• ферментативную (например, амилаза, расщепляет углеводы). Ферменты выполняют функцию катализаторов химических реакций и участвуют во всех биологических процессах.
• структурную (например, входят в состав мембран клетки). Структурные белки участвуют в образовании мембран и органоидов клетки. Белок коллаген входит в состав межклеточного вещества костной и соединительной ткани, а кератин является основным компонентом волос, ногтей, перьев.
• рецепторную (например, родопсин, способствует лучшему зрению).
• транспортную (например, гемоглобин, переносит кислород или диоксид углерода).
• защитную (например, иммуноглобулины, участвуют в образовании иммунитета).
• двигательную (например, актин, миозин, участвуют в сокращении мышечных волокон). Сократительная функция белков обеспечивает организму возможность двигаться посредством сокращения мышц.
• гормональную (например, инсулин, превращает глюкозу в гликоген). Белки-гормоны обеспечивают регуляторную функцию. Белковую природу имеет гормон роста (его избыток у ребенка приводит к гигантизму), гормоны, регулирующие работу почек, и др.
• энергетическую (при расщеплении 1 г белка выделяется 4,2 ккал энергии). Энергетическую функцию белки начинают выполнять при их избытке в пище либо, напротив, при сильном истощении клеток. Чаще мы наблюдаем, как пищевой белок, перевариваясь, расщепляется до аминокислот, из которых затем создаются белки, необходимые организму.

Вопрос 7. Что такое денатурация белка? Что может явиться причиной денатурации?
Денатурация — это утрата белковой молекулой своего нормального («природного») строения: третичной, вторичной и даже первичной структуры. При денатурации белковый клубок и спираль раскручиваются; водородные, а затем и пептидные связи разрушаются. Денатурированный белок не способен выполнять свои функции. Причинами денатурации являются высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжелых металлов, органических растворителей. Примером денатурации служит варка куриного яйца. Содержимое сырого яйца жидкое и легко растекается. Но уже через несколько минут нахождения в кипятке оно меняет свою консистенцию, уплотняется. Причина — денатурация яичного белка альбумина: его клубковидные, растворимые в воде молекулы-глобулы раскручиваются, а затем соединяются друг с другом, образуя жесткую сеть.
При улучшении условий денатурированный белок способен восстановить свою структуру вновь, если не разрушается его первичная структура. Этот процесс называется ренатурацией.

7 видов питательных веществ. Какое важнее?

     Углеводы, жиры, белки, витамины, минералы, клетчатка и вода — 7 главных компонентов пищи. Каждый из компонентов выполняет специфические функции и принимает участие в регуляции физиологических процессов, поэтому все они необходимы для нормального функционирования организма.

     Углеводы, являясь основным источником энергии, обеспечивают организм теплом и топливом для работы. Белки предоставляют строительный материал для  роста и восстановления всех клеток и тканей. Жиры —  резервный аккумулятор энергии на «черный день», источник важных компонентов для регуляции обмена веществ, в том числе и гормонального обмена. Клетчатка выполняет функцию пылесоса, помогая организму очищаться от токсинов, а также поддерживает нормальную микрофлору кишечника. Витамины и минералы, взаимодействуя между собой, обеспечивают большинство биохимических реакций. Вода как универсальный растворитель является важнейшим регулятором обмена веществ и обеспечивает работу всех функций организма.

     В разных категориях пищи преобладают разные питательные вещества. Например, мясо — превосходный источник белка, в то время как зёрна богаты углеводами, а овощи и фрукты содержат много витаминов и клетчатки.

     Не существует одного наиболее важного питательного вещества. Все они имеют равную ценность, и их соотношение в рационе должно быть сбалансированно. Дефицит хотя бы одного из нутриентов чреват проблемами со здоровьем. Например, если продолжительное время вы испытываете слабость, снижение концентрации внимания, перепады настроения, утомляемость — вероятно в вашем рационе недостаточно углеводов. Дефицит белка может привести к снижению иммунитета, анемии, мышечной слабости и истощению. Недостаток полезных жиров может привести  к нарушению гормонального фона, сухости и шелушению кожи. Дефицит клетчатки приводит к нарушению работы кишечника и дисбактериозу. А водный дисбаланс грозит интоксикацией и нарушением метаболизма.

     Несмотря на то, что перечисленные вещества необходимы каждому человеку, их оптимальное соотношение всегда индивидуально. Факторами, влияющими на потребность нутриентов, являются генетика, возраст, вес, уровень активности, образ жизни, пол и состояние здоровья. Например, для здорового мужчины 35 лет с весом 85 кг, работающего в офисе и 2 раза в неделю посещающего спортзал, потребность в  нутриентах следующая:

Диапазон калорий: 2400-2650 ккал

Норма белка: 200-210 г

Норма жиров: 67-70 г

Норма углеводов: 270-320 г

     Очень важно знать, каковы именно ваши индивидуальные потребности. Это основа правильного питания и первый шаг к здоровому образу жизни. Чтобы узнать, какое количество питательных веществ необходимо вам и какое их соотношение будет правильным, лучше всего  обратиться к специалисту диетологу или нутрициологу. Или воспользоваться приложением умного браслета ONETRAK Sport, которое не только рассчитает вашу дневную норму, но и поможет ее соблюдать.

     Баланс, умеренность и разнообразие – главные характеристики здорового питания. От этого зависит ваше самочувствие, здоровье, внешние изменения, спортивные достижения и даже настроение.

 

5.1: Углеводы - Chemistry LibreTexts

Цели обучения

  • Для распознавания углеводов и их классификации на моно-, ди- или полисахариды.

Все углеводы состоят из атомов углерода, водорода и кислорода и являются полигидроксиальдегидами или кетонами или соединениями, которые могут расщепляться с образованием таких соединений. Примеры углеводов включают крахмал, клетчатку, сладкие на вкус соединения, называемые сахарами, и структурные материалы, такие как целлюлоза.Термин углевод возник в результате неправильной интерпретации молекулярных формул многих из этих веществ. Например, поскольку его формула C 6 H 12 O 6 , глюкоза когда-то считалась «гидратом углерода» со структурой C 6 · 6H 2 O.

Пример \ (\ PageIndex {1} \)

Какие соединения можно отнести к углеводам?

Решение

  1. Это углевод, потому что молекула содержит функциональную альдегидную группу с группами ОН на двух других атомах углерода.
  2. Это не углевод, потому что молекула не содержит функциональную группу альдегида или кетона.
  3. Это углевод, потому что молекула содержит кетонную функциональную группу с группами ОН на двух других атомах углерода.
  4. Это не углевод; хотя он имеет кетонную функциональную группу, один из других атомов углерода не имеет присоединенной группы ОН.

Упражнение \ (\ PageIndex {1} \)

Какие соединения можно отнести к углеводам?

Зеленые растения способны синтезировать глюкозу (C 6 H 12 O 6 ) из ​​углекислого газа (CO 2 ) и воды (H 2 O), используя солнечную энергию в процессе, известном как фотосинтез. :

\ [\ ce {6CO_2 + 6H_2O} + \ text {686 ккал} \ rightarrow \ ce {C_6H_ {12} O_6 + 6O_2} \ label {\ (\ PageIndex {1} \)} \]

(686 ккал приходится на солнечную энергию.) Растения могут использовать глюкозу для получения энергии или преобразовывать ее в более крупные углеводы, такие как крахмал или целлюлозу. Крахмал обеспечивает энергию для дальнейшего использования, возможно, в качестве питания для семян растений, в то время как целлюлоза является структурным материалом растений. Мы можем собрать и съесть части растения, которые хранят энергию - семена, корни, клубни и плоды - и использовать часть этой энергии сами. Углеводы также необходимы для синтеза нуклеиновых кислот и многих белков и липидов.

Животные, включая человека, не могут синтезировать углеводы из углекислого газа и воды и поэтому зависят от царства растений в обеспечении этих жизненно важных соединений.Мы используем углеводы не только в пищу (около 60–65% от среднего рациона), но также для изготовления одежды (хлопок, лен, вискоза), жилья (дрова), топлива (дрова) и бумаги (дрова).

Простейшие углеводы - те, которые не могут быть гидролизованы с образованием еще более мелких углеводов - называются моносахаридами. Два или более моносахаридов могут соединяться вместе, образуя цепи, содержащие от двух до нескольких сотен или тысяч моносахаридных единиц. Префиксы используются для обозначения количества таких единиц в цепочках.Молекулы дисахаридов содержат две моносахаридные единицы, трисахаридных молекул, трех единиц и так далее. Цепи с множеством соединенных вместе моносахаридных звеньев называются полисахаридами. Все эти так называемые высшие сахариды можно гидролизовать обратно до составляющих их моносахаридов.

Соединения, которые нельзя гидролизовать, не будут реагировать с водой с образованием двух или более соединений меньшего размера.

Сводка

Углеводы - важная группа биологических молекул, в которую входят сахара и крахмалы.Фотосинтез - это процесс, при котором растения используют энергию солнечного света для синтеза углеводов. Моносахарид - это простейший углевод, который не может быть гидролизован с образованием молекулы углевода меньшего размера. Дисахариды содержат две моносахаридные единицы, а полисахариды содержат много моносахаридных единиц.

Упражнения по обзору концепции

  1. Почему фотосинтез важен?

  2. Определите различия между моносахаридами, дисахаридами и полисахаридами.

Ответы

  1. Фотосинтез - это процесс, при котором солнечная энергия используется для восстановления углекислого газа до углеводов, которые необходимы растениям и другим живым организмам, питающимся растениями, для получения энергии.

  2. Моносахарид - это простейший углевод, который не может быть гидролизован с образованием углеводов меньшего размера; дисахарид состоит из двух моносахаридных единиц; и полисахарид содержит много сахаридных звеньев.

Упражнения

  1. Когда водный раствор трегалозы нагревается, на каждую молекулу трегалозы образуются две молекулы глюкозы. Является ли трегалоза моносахаридом, дисахаридом или полисахаридом?

  2. При нагревании водного раствора арабинозы другие молекулы не образуются. Арабиноза - это моносахарид, дисахарид или полисахарид?

Ответ

  1. Трегалоза является дисахаридом, потому что она гидролизуется до двух молекул глюкозы (моносахарида).

Углеводы

Углеводы

Углеводы

Углеводы: Моносахариды

Термин углевод первоначально использовался для описания соединения, которые были буквально «гидратами углерода» потому что у них была эмпирическая формула CH 2 O. лет углеводы были классифицированы на основе их структуры, а не их формулы.Теперь они определены как полигидрокси. альдегиды и кетоны . Среди соединений, относящихся к это семейство - целлюлоза, крахмал, гликоген и большинство сахаров.

Есть три класса углеводов: моносахариды, дисахариды и полисахариды. Моносахариды белые кристаллические твердые вещества, содержащие один альдегид или кетонная функциональная группа. Они подразделяются на два класса: альдоз и кетоз по в зависимости от того, являются ли они альдегидами или кетонами.Они также классифицируется как триоза, тетроза, пентоза, гексоза или гептоза на на основе того, содержат ли они три, четыре, пять, шесть или семь атомов углерода.

За одним исключением, моносахариды оптически активные соединения. Хотя возможны как D-, так и L-изомеры, большинство моносахаридов, встречающихся в природе, находятся в D конфигурация. Структуры для D- и L-изомера простейшего альдоза, глицеральдегид, показаны ниже.

D-глицеральдегид L-глицеральдегид

Структуры многих моносахаридов были впервые определены Эмилем Фишером в 1880-х и 1890-х годах и до сих пор остаются написано в соответствии с разработанной им конвенцией. Фишер проекция представляет, как могла бы выглядеть молекула, если бы ее трехмерные конструкции проецировались на лист бумаги.По соглашению проекции Фишера пишутся вертикально, с альдегид или кетон вверху. Группа -OH на предпоследний атом углерода написан справа от структура скелета для изомера D и слева для L изомер. Проекции Фишера для двух изомеров глицеральдегида показаны ниже.

D-глицеральдегид L-глицеральдегид

Эти прогнозы Фишера могут быть получены из структуры скелета, показанные выше, путем визуализации того, что могло бы произойти если вы поместите модель каждого изомера на диапроектор так что группы CHO и CH 2 OH лежали на стекле и затем посмотрел на изображения этих моделей, которые будут проецироваться на экране.

прогнозов Фишера для некоторых из общие моносахариды приведены на рисунке ниже.

АЛДОЗ
КЕТОЗ
D-рибулоза D-фруктоза

Если углеродная цепь достаточно длинная, спирт на одном конце моносахарида может атаковать карбонил группа на другом конце с образованием циклического соединения.Когда образуется шестичленное кольцо, продукт реакции называется пиранозой , а показано на рисунке ниже.

Когда образуется пятичленное кольцо, оно называется фуранозой , показано на рисунке ниже.

Существуют две возможные структуры пиранозы и фуранозные формы моносахарида, которые называются a- и b-аномерами.

Реакции, приводящие к образованию пиранозы или фуранозы обратимы.Таким образом, не имеет значения, начнем ли мы с чистым образцом a-D-глюкопиранозы или b-D-глюкопираноза. В течение нескольких минут, эти аномеры взаимно превращаются, чтобы дать равновесную смесь что составляет 63,6% β-аномера и 36,4% a-аномера. 2: 1 предпочтение b-аномера может быть можно понять, сравнив структуры этих молекул, показанные ранее. В b-аномере все объемные заместители -ОН или -СН 2 ОН лежат более или менее в плоскости шестичленного кольца.В a-аномере одна из групп -OH является перпендикулярно плоскости шестичленного кольца, в области где он чувствует сильные силы отталкивания от атомов водорода которые лежат в аналогичных позициях по всему рингу. В результате b-аномер немного более стабилен, чем a-аномер.

Углеводы: Дисахариды и полисахариды

Дисахариды образуются путем конденсации пары моносахаридов.Структуры трех важных дисахариды с формулой C 12 H 22 O 11 показаны на рисунке ниже.

Мальтоза или солодовый сахар, образующийся при крахмале разлагается, является важным компонентом ячменного солода, используемого для варить пиво. Лактоза , или молочный сахар, представляет собой дисахарид. содержится в молоке. У совсем маленьких детей есть особый фермент, известный как лактаза, которая помогает переваривать лактозу.По мере взросления многие люди теряют способность переваривать лактозу и не переносят молоко или молочные продукты. Потому что в грудном молоке вдвое больше лактоза как молоко от коров, маленькие дети, у которых вырабатывается лактоза непереносимость во время кормления грудью переносится на коровье молоко или синтетическая смесь на основе сахарозы.

Вещество, которое большинство людей называют "сахаром", - это дисахарид сахароза , который экстрагируется либо из сахарный тростник или свекла.Сахароза - самая сладкая из дисахариды. Он примерно в три раза слаще мальтозы и в шесть раз слаще лактозы. В последние годы сахароза была заменен во многих коммерческих продуктах кукурузным сиропом, который получается при расщеплении полисахаридов в кукурузном крахмале. Кукурузный сироп - это в первую очередь глюкоза, сладкая примерно на 70%. как сахароза. Фруктоза, однако, примерно в два с половиной раза больше, чем сладкий, как глюкоза. Таким образом, коммерческий процесс был разработан, который использует фермент изомеразу для преобразования около половины глюкоза в кукурузном сиропе превращается во фруктозу (см. практическую задачу 4).Этот кукурузный подсластитель с высоким содержанием фруктозы такой же сладкий, как и сахароза, и нашел широкое применение в безалкогольных напитках.

Моносахариды и дисахариды представляют собой лишь небольшую доля от общего количества углеводов в натуральном Мир. Основная масса углеводов в природе присутствует как полисахариды , которые имеют относительно большие молекулярные массы. Полисахариды служат двум основным направлениям. функции. Они используются как растениями, так и животными для хранения глюкоза как источник пищевой энергии в будущем, и они обеспечивают некоторую механической структуры клеток.

Очень немногие формы жизни получают постоянный запас энергии из своего окружения. Чтобы выжить, растения и животные клетки должны были разработать способ хранения энергии во время много, чтобы выжить в последующие времена нехватки. Растения хранят пищевую энергию в виде полисахаридов, известных как , крахмал . Существует два основных вида крахмала: амилоза и амилопектин. Амилоза содержится в водорослях и других низших формах растений.Это линейный полимер примерно из 600 остатков глюкозы структуру которой можно предсказать, добавив a-D-глюкопиранозу кольца до структуры мальтозы. Амилопектин - это доминирующая форма крахмала у высших растений. Это разветвленный полимер около 6000 остатков глюкозы с разветвлениями по 1 дюйм каждые 24 кольца глюкозы. Небольшая часть структуры амилопектин показан на рисунке ниже.

Амилоза
n = 1000-6000

Полисахарид, используемый животными для кратковременного хранения. пищевой энергии известен как гликоген .Гликоген почти та же структура, что и амилопектин, с двумя небольшими отличиями. Молекула гликогена примерно в два раза больше амилопектина, и у него примерно вдвое больше ветвей.

Есть преимущество у разветвленных полисахаридов, таких как амилопектин и гликоген. В периоды нехватки ферменты атакуют один конец полимерной цепи и отрезают глюкозу молекулы, по одной. Чем больше веток, тем больше очков который фермент атакует полисахарид.Таким образом, весьма разветвленный полисахарид лучше подходит для быстрого высвобождения глюкоза, чем линейный полимер.

Полисахариды также используются для формирования стенок растений и бактериальные клетки. Клетки, не имеющие клеточной стенки, часто ломаются открываться в растворах с слишком низкой концентрацией солей (гипотонический) или слишком высокий (гипертонический). Если ионная сила раствор намного меньше ячейки, осмотическое давление заставляет воду проникать в клетку, чтобы привести систему в равновесие, что вызывает взрыв ячейки.Если ионная сила раствор слишком высок, осмотическое давление вытесняет воду из ячейка, и ячейка разрывается при сжатии. Клеточная стенка обеспечивает механическую прочность, которая помогает защитить клетки растений которые живут в пресноводных прудах (слишком мало соли) или морской воде (тоже много соли) от осмотического шока. Клеточная стенка также обеспечивает механическая прочность, позволяющая растительным клеткам выдерживать вес других ячеек.

Наиболее распространенным структурным полисахаридом является целлюлоза.В клеточных стенках растений так много целлюлозы, что она самая распространенная из всех биологических молекул. Целлюлоза - это линейный полимер остатков глюкозы со структурой, которая напоминает амилозу больше, чем амилопектин, как показано на рисунок ниже. Разница между целлюлозой и амилозой может быть видно при сравнении показателей амилозы и целлюлоза. Целлюлоза образуется путем связывания b-глюкопиранозы кольца вместо а-глюкопиранозы кольца крахмала и гликогена.

Целлюлоза
n = 5000-10 000

Заместитель -ОН, который служит первичным звеном между -глюкопиранозные кольца в крахмале и гликогене перпендикулярны плоскость шестичленного кольца. В результате кольца глюкопиранозы в этих углеводах образуют структуру, которая напоминает лестницу на лестничной клетке. Заместитель -ОН, который связывает b-глюкопиранозные кольца в целлюлоза лежит в плоскости шестичленного кольца.Этот Таким образом, молекула растягивается линейно. Это делает между -OH легче образовываться прочным водородным связям группы соседних молекул. Это, в свою очередь, придает целлюлозе жесткость, необходимая для того, чтобы он служил источником механических строение растительных клеток.

Целлюлоза и крахмал - отличный пример связи между структурой и функцией биомолекул. На рубеже века Эмиль Фишер предположил, что структура фермент соответствует веществу, на которое он действует, во многом так же, как подбираются замок и ключ.Таким образом, амилаза ферменты в слюне, которые разрушают α-связи между молекулами глюкозы в крахмале не может воздействовать на b-связи в целлюлозе.

Большинство животных не могут переваривать целлюлозу, потому что у них нет фермент, который может расщеплять b-связи между молекулами глюкозы. Поэтому целлюлоза в их рационе служит только клетчаткой или грубым кормом. Пищеварительный тракт некоторых животные, такие как коровы, лошади, овцы и козы, содержат бактерии которые имеют ферменты, которые расщепляют эти b-связи, чтобы эти животные могли переваривать целлюлозу.

Практическая задача 3 :

Термиты привести пример симбиотических отношений между бактерии и высшие организмы. Термиты не могут переваривать целлюлоза в древесине, которую они едят, но их пищеварительная система тракты заражены бактериями, которые могут. Предложить простой способ избавить дом от термитов, без убивать других насекомых, которые могут принести пользу.

Нажмите здесь, чтобы проверить ваш ответ на практическую задачу 3

В течение многих лет биохимики считали углеводы тусклые, инертные соединения, заполнившие пространство между волнующими молекул в клетке белков. Углеводы были примесью, которую нужно было удалить, когда «очищающий» белок. Биохимики теперь признают, что большинство белков на самом деле гликопротеинов , в какие углеводы ковалентно связаны с белковой цепью.Гликопротеины играют особенно важную роль в формировании жестких клеточных стенок, окружающих бактериальные клетки.


макромолекул

макромолекул Макромолекулы

До сих пор мы рассматривали только небольшие молекулы. Многие молекулы, важные для биологических процессов, ОГРОМНЫ. Эти известны как макромолекулы. Большинство макромолекул представляют собой полимеры, которые длинные цепочки субъединиц, называемые мономерами.Эти субъединицы часто очень похожи друг на друга, и при всем разнообразии полимеров (и живых вещи в общем) всего около 40-50 обычных мономеров.

Изготовление и разрушение полимеров

Соединение двух мономеров достигается с помощью процесса, известного как дегидратационный синтез. Один мономер отдает гидроксильную (ОН) группу, а один отдает (H). Они объединяются в молекулу воды. Отсюда и название дегидратация синтез.

Полимеры распадаются на части в процессе, известном как гидролиз . Связи между мономерами разрываются при добавлении воды. (3.3, стр. 36)

Найдено четыре основных категории органических соединений. в живых клетках.

Углеводы

Углеводы - это сахара и их полимеры. Простой сахара называются моносахаридами . Они могут быть объединены с образованием полисахаридов (3.5, стр. 38). Глюкоза - важный моносахарид. Сахароза, дисахарид (состоящий из двух моносахаридов), представляет собой столовый сахар.(Обратите внимание на окончание "ose" обычен для большинства сахаров.)

Полисахариды могут быть получены из тысяч простых сахаров связаны вместе. Эти большие молекулы могут использоваться для хранения энергии. или для структуры. Сначала пара примеров хранения:

Крахмал - запасной полисахарид растений. Его это гигантская цепочка глюкоз. Растение может использовать энергию крахмала. сначала гидролизуя его, делая доступной глюкозу. Большинство животных могут также гидролизуют крахмал. Вот почему мы его едим.

Животные хранят гликоген в качестве запаса глюкозы. Он хранится в печени и мышцах. (3,7, стр. 39)

И несколько примеров структурных углеводов:

Целлюлоза - это полисахарид, производимый растениями. Это компонент клеточных стенок. Целлюлоза - это также нить глюкозы. молекулы. Потому что глюкозы соединяются по-разному, целлюлоза имеет другую форму и, следовательно, другие свойства, чем крахмал или гликоген. Используемые ферменты (мы скоро узнаем о них больше) гидролизовать крахмал не работают с целлюлозой.Большинство организмов не могут переваривать целлюлоза и проходит сквозь них (грубые корма). Козы и термиты на самом деле не переваривают целлюлозу, у них есть бактерии, которые делают это за них.

Хитин - важный полисахарид, используемый для экзоскелеты членистоногих.

Липиды

Липиды все похожи в том, что они (по крайней мере частично) гидрофобный . Есть три важных семейства липидов: жиры, фосфолипиды и стероиды.

Жиры

Жиры - это большие молекулы, состоящие из двух типов молекул, глицерин и некоторые жирные кислоты.Жирная кислота имеет длинную цепочку углерод и водород, обычно называемые углеводородным хвостом, с головка карбоксильной группы. (Карбоксильная группа поэтому называется кислотой). Глицерин имеет три атома углерода (3,8b, пг 40), поэтому он может получить три жирные кислоты. Это могут быть одинаковые три или разные. Это расположение трех почему жиры называются триглицеридами .

Жиры могут быть насыщенными и ненасыщенными. Это связано с количество водорода в хвосте. Ненасыщенные жирные кислоты содержат водород. отсутствует, с заменой двойных связей.Двойная связь дает жирную кислота перегиб (3.8c, pg 40). Насыщенные жиры остаются твердыми при комнатной температуре. и происходят от животных, ненасыщенные жиры поступают из растений и являются жидкими при комнатной температуре.

Жиры используются в качестве накопителей энергии высокой плотности у животных и в растениях (семенах). Его также можно использовать для изоляции животных.

фосфолипиды

Фосфолипиды похожи на жиры, но содержат две жирные кислоты. и фосфатная группа, присоединенная к глицерину. Хвосты жирных кислот гидрофобны. но фосфатная часть гидрофильна.Это важная особенность эти молекулы.

Еще о фосфолипидах, когда мы говорим о структуре мембраны.

Стероиды

Стероиды также являются липидами, но имеют углеродный скелет. четырех связанных колец (без глицерина) (3.9, стр. 41). Разные Свойства различных стероидов обусловлены присоединенными функциональными группами. Холестерин - это стероид, который можно модифицировать для образования многих гормонов.

Белки

Белки чрезвычайно важны.Они большие, сложные молекулы, которые используются для структурной поддержки, хранения, транспортировки веществ, и как ферменты. Это сложная, разнообразная группа молекул, и тем не менее, все они представляют собой полимеры, состоящие всего из 20 аминокислот.

Аминокислоты имеют углерод, присоединенный к водороду, амино группа, карбоксильная группа и что-то еще (R). Это что-то еще которые придают аминокислоте ее характеристики (3.12a и b, стр. 42).

Аминокислоты соединены пептидными связями (дегидратация синтез) (3.13, стр.43). Полипептидные цепи - это цепочки аминокислот, соединены пептидными связями.

Белки образуются путем скручивания одного или нескольких полипептидов. цепи. Это форма или конформация белка, который придает ему его свойства. Есть четыре уровня белковой структуры.

Первичная структура - уникальная серия аминокислотных остатков. кислоты. Вторичная структура является результатом водородных связей вдоль цепь, которая вызывает повторяющиеся спиральные или складчатые узоры. высшее структура накладывается на вторичную структуру. Это нерегулярный искривления, образованные связью между R-группами. Некоторые R-группы амино кислоты имеют сульфгидрильные группы, которые соединяются вместе, образуя дисульфидные мостики. Четвертичная структура получается, когда белок состоит из более чем одна полипептидная субъединица (например, гемоглобин, у которого четыре полипептида субъединицы). Четвертичная структура - это взаимосвязь этих субъединиц. (Рисунок на стр. 45 для обобщения) Когда структура белка была изменена мы говорим, что он денатурирован.Денатурация происходит, когда водородные связи которые удерживают части молекулы с другими частями, разваливаются. Как правило в результате воздействия экстремальных значений pH или тепла. Некоторая денатурация обратима некоторые необратимы. Приготовление яиц денатурирует белки в яичных белках. Они не могут быть сырыми. Высокая температура может денатурировать белки (ферменты) в человеческое тело, которое может быть фатальным.

Нуклеиновые кислоты

Дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК) представляют собой полимеры нуклеотидов (3.20а, стр. 47). Позже мы узнаем больше подробно описать роль этих нуклеиновых кислот в синтезе белка.

Нуклеотиды состоят из трех частей: фосфата и пентозы. сахар и азотистое основание. Пентозный сахар ДНК - дезоксирибоза. Пентозный сахар РНК - рибоза.

ЯЧЕЙКИ

Все организмы состоят из клеток . Субклеточные структуры называются органеллами . Цитология - это исследование клеточной структуры. «Анатомия» клетки обозначается как ее ультраструктура .

Есть два типа клеток: прокариотические клетки и эукариотических клеток . Четыре из пяти царств, протисты, растения, грибы и животные состоят из эукариотических клеток. Другое королевство, Monera (бактерии и цианобактерии) состоит из прокариотических клеток. Прокариотический клетки не имеют истинного ядра. У них есть генетический материал (ДНК), но он в области нуклеоида . ДНК эукариот находится в ядре который заключен в мембранную ядерную оболочку .Ядро эукариот окружен в клетке цитоплазмой . В органеллы расположены в цитоплазме. Многие органеллы, найдены у эукариот, не найдены у прокариот.

Ячейки обычно очень маленькие. Размер самого маленького клеток ограничено минимальным количеством необходимого генетического материала чтобы клетка продолжала работать. В конечном итоге размер ячейки ограничен прохождение материалов через плазматическую мембрану . Все ячейки заключены в плазматическую мембрану, и именно через эту мембрану все питательные вещества и отходы должны пройти.Как трехмерный объект растет по размеру его поверхность не поспевает за объемом. Таким образом клетки достигают ограничение их максимального размера. Разделение различных клеточных функций в другие структуры, закрытые мембраной, позволяет использовать более крупные клетки. Это почему эукариотические клетки обычно больше прокариотических клеток. Другой Фактором, ограничивающим размер ячеек, является то, что ячейка должна контролироваться ядром. Вы должны посмотреть раздел 4.2 о различных размерах ячеек.

Какие три элемента содержатся во всех углеводах, включая сахар? | Здоровое питание

Сюзанна Фантар Обновлено 6 декабря 2018 г.

Углеводы часто получают негативное внимание как враги человека, сидящего на диете.Тем не менее, Американская диетическая ассоциация утверждает, что они должны быть вашим основным источником энергии, составляя от 45 до 65 процентов ваших общих суточных калорий. Это потому, что углеводы являются самым быстрым источником топлива для вашего тела, в конечном итоге производя простую сахарную глюкозу. Глюкоза поддерживает метаболические реакции во всем теле и является единственной формой энергии, которую может использовать мозг.

Определение углеводов

Название «углевод» раскрывает химический состав этого класса питательных веществ.Действительно, «углевод» означает углерод, а «гидрат» означает воду, комбинацию молекул водорода и кислорода. Поэтому все углеводы, включая сахар, содержат одни и те же три элемента: углерод, водород и кислород. Различное расположение этих элементов формирует единые единицы для производства разных типов углеводов. Глюкоза, например, представляет собой одноэлементный углерод с шестью атомами углерода, 12 атомами водорода и шестью атомами кислорода.

Простое против сложного

Термин сахар обычно относится к одной или двум единицам углеводов.Это простые углеводы. На научном языке они известны как моносахариды или дисахариды. «Моно» означает один, «ди-» означает два, а «сахарид» означает сахар. Фруктовый сахар и столовый сахар являются распространенными примерами моно- и дисахаридов соответственно. Углеводы с тремя или более сахарными единицами попадают в категорию сложных углеводов или полисахаридов. Типичный пример - крахмалы.

Кислород

Кислород - это самый распространенный элемент в вашем теле, на него приходится около 61 процента массы человека.От него зависит дыхание, но оно также помогает образовывать многочисленные соединения по всему телу. Роль кислорода как компонента воды особенно важна для жизни, поскольку вода поддерживает живые организмы. Каждая молекула воды содержит один водород и два кислорода.

Углерод

Один только углерод составляет почти 23 процента человеческого тела, занимая второе место по распространенности. Произведенный от латинского слова уголь, углерод настолько важен для жизни, что ученые посвятили ему целую отрасль химии, а именно органическую химию.В качестве строительного блока углерод присоединяется к другим элементам, образуя множество соединений. По данным Коалиции по образованию в области минералов, углеводы являются лишь некоторыми из 10 миллионов или около того соединений, которые углерод может создавать.

Водород

Греческое происхождение водорода означает «образование воды». Согласно MEC, один только водород составляет почти 75 процентов всей материи во Вселенной. Однако в организме человека он составляет только 10 процентов всех элементов, занимая третье место после кислорода и углерода.Чистый водород легко воспламеняется, поэтому ваше тело использует его как компонент воды. Именно в такой форме он помогает строить большинство органических молекул и некоторых минералов.

Природа растительных веществ и обсуждение

СКЕЛЕТ ЗАВОДА

В 1952 г. А. Ф. Хилл из Гарварда Университет выделил различные части растений, которые необходимы для понимание их природы и использования для людей и животных.Было отмечено, что ограждение огораживает подавляющее большинство растительных клеток и ограничивающий состав под названием Cell Стена . Стена придает прочность и жесткость растение и служит своеобразным скелетом. Эти стены всегда состоят из целлюлозы, которая встречается в одиночку. или с другими веществами. Целлюлоза это неживое вещество, которое растение вырабатывает из виноградного сахара. Это химически очень сложный углевод с формулой (C 6 H 10 O 5 ) n Стенки клеток различаются по размеру и внешность.У некоторых стены сильно утолщенные, которые называются склеренхима Ячейки. Они предназначены для поддержать растение. Как тело растения увеличивается в размерах, требуется больше поддержки и различные ткани склеренхимы сформированы, которые почти полностью состоят из волокон. Волокна представляют собой длинные заостренные клетки с очень толстые стенки и небольшие полости. Они имеют тенденцию к переплетению и могут растягиваться и сжиматься. Некоторые волокна имеют клеточные стенки, которые почти чистая целлюлоза, например хлопок.В других также присутствует некоторое количество лигнина, как в лубяных волокнах, найденных в кора растений. Лигнин сильно увеличивает прочность стены без уменьшения ее способности проводить воду. Когда необходимо защитное покрытие, стены из целлюлозы могут быть пропитаны производимыми гидроизоляционными материалами такие как суберин, кутин или слизь. В некоторых случаях неорганические материалы, такие как диоксид кремния, могут присутствовать в клеточные стенки.

Свойства, которые делают клеточные стенки полезные для растения часто несут ответственность за экономическую ценность люди.Одревесневшие стены из дерева имеет множество применений, когда требуется жесткий, но легко обрабатываемый материал. Чем больше эластичных волокон - это основа текстильной промышленности и наряду с древесиной составляют основное сырье материал бумажной промышленности. Клетка стены с суберином обеспечивают пробку. Стены из почти чистой целлюлозы используются для изготовления синтетических материалов. волокна, целлофан, взрывчатые вещества и другие промышленные товары. Поскольку целлюлоза и ее производные горючие, в качестве топлива можно использовать все типы стенок ячеек.Уголь - это ведь стены растений, которые процветали в каменноугольный период и постепенно утратили их газообразные элементы. Постепенное чередование видов топлива, которые показывают прогрессирующую потерю водорода и кислорода, может можно отслеживать от целлюлозы до лигнина, торфа, мягких и каменных углей.

ПРОТОПЛАЗМ

Большое количество сахара, производимого во время фотосинтеза. используется при образовании новой протоплазмы, чтобы заменить сломавшуюся вниз и обеспечить рост растения.Протоплазма растений - очень сложное вещество, и его химическая природа не совсем понятен, хотя общие элементы включены в его состав. он содержит простые сахара и более высоко промышленные углеводы; жиры на разных стадиях синтеза; большой количество белкового материала, частично полученного из виноградного сахара и частично из нитратов, абсорбированных из почвы; соли разных неорганических элементов, такие как фосфор, железо, магний, сера, калий и кальций; а также витамины, ферменты и другие выделения.Когда пища готовится, она сильно меняет изначальную природу растения. протоплазма. Все согласны что свежая, сырая растительная пища может иметь большую пользу для здоровья из-за наличие витаминов и других компонентов протоплазмы в здоровом состояние.

РЕЗЕРВ ЕДА

В большинстве случаев растения гораздо больше пищи, чем можно сразу использовать для роста растений или в качестве источника энергии.Излишки хранятся в сильно модифицированные ячейки в разных местах в качестве резервного источника, который будет использоваться для роста и других занятий в более позднее время. Подземные стебли, корни, почки и семена являются основным хранилищем органы растений. Три основных виды пищевых материалов, которые производятся растениями, - это углеводы, жиры и белки.

Углеводы

Это самые простые растения продукты.Они состоят из углерода, водород и кислород в соотношении двух частей водорода к одной из кислород. Основные углеводы: сахар, крахмал и целлюлоза.

Сахар . - Виноградный сахар, производимые растением в процессе фотосинтеза, чаще всего присутствуют в растении клетки. Это основной материал обмена веществ, известная как глюкоза, имеет формулу C 6 H 12 O 6. Иногда хранится в больших такое количество, которое содержится в стеблях кукурузы. Фруктовый сахар или фруктоза, другой продукт фотосинтеза, имеет ту же формулу, но обладает немного другой характеристики. Чаще всего встречается только во фруктах.

Высшие и более сложные сахара сформированы из этих простых сахаров. Наиболее важным из высших сахаров является тростниковый сахар или сахароза с формулой C 12 H 22 O 11 .Накапливается в больших количествах в сахарная свекла и сахарный тростник и, в меньшей степени, многие другие растения. Все сахара растворимы в воде и таким образом, они легко доступны для использования растением. Они очень питательны и служат ценным кормом для животные и люди. Мы используем эти сахара не только в том виде, в каком они присутствуют в тканях растений, но и путем извлечения и очищая их.

Крахмал . .-- Крахмалы нерастворимые соединения сложной природы и формулы (C 6 H 10 O 6 ) n . Их получают из виноградного сахара и составляют первый видимый продукт фотосинтеза. Крахмал - самый распространенный вид резерва. пища зеленых растений и имеет важнейшее значение в их метаболизме. Однако из-за его нерастворимости крахмал должен быть переварен, то есть сделать растворимым, прежде чем его можно будет использовать.Это делается с помощью ферментов. которые присутствуют в клетках. Крахмал хранится в крупных тонкостенных ячейках в виде характерных зерен. Люди очень зависят от крахмала, который представляет собой важнейшую растительную пищу и жизненно важен в промышленном мире. также.

Целлюлоза . - Это высший вид углевод. Помимо его присутствия в стенки клеток, у него мало, если вообще есть, функции резервного питания, хотя есть свидетельства того, что его используют некоторые бактерии.

Резервная целлюлоза .-- Они напоминают целлюлоза физически, но они различаются по своим химическим свойствам. К ним относятся гемицеллюлозы, пектины, десны и слизи. Что-нибудь из этого соединения играют двойную роль. Они помогают поддерживают стенки клеток и служат резервной пищей. Гемицеллюлозы могут постепенно превращаться в пектины, а затем в десны.

Гемицеллюлоза .- Они часто встречаются как дополнительные слои стенки клеток, особенно в семенах тропических растений, таких как финик и пальма цвета слоновой кости. Они легко усваиваются растениями, но лишь в незначительной степени усваиваются людьми, и поэтому не подходят для питания человека. Однако у них есть применение в некоторых отраслях.

Пектины . - Это фруктовые желе, которые встречаются у большинства растений. клетки, особенно во фруктах и ​​овощах.Они хорошо растворяются в воде и могут использоваться в пищу обоими растениями. и животные. Пектины также увеличивают задержка воды в клетках. Середина пластинка, цементирующий материал, скрепляющий стенки ячеек, состоит из пектиновые соединения. Пектины затвердевают после того, как они были удалены с растения, и люди воспользуются этим при приготовлении джемов и желе.

Камеди .- расщепление целлюлозы или других углеводов соединений является производным этих. Они состоят органической кислоты в сочетании с неорганическими солями. Они могут секретироваться естественным путем в тканей или может возникнуть в результате ранения. Камеди помогают удерживать воду в растении, а также служат резервная еда. Они используются в промышленность, медицина и продукты питания.

слизи .- Они тесно связаны с деснами. При намокании водой не растворяются но образуют слизистые массы. Они есть секретируется в мешочки, каналы или волосы. Они выполняют разнообразную функцию и могут служить в качестве резервной пищи, в качестве вспомогательного средства. в контроле потери воды или слишком быстрой диффузии, как механизма для хранение воды и как средство для облегчения рассеивания семян. Слизь часто встречается в ассоциации с целлюлозой в клеточных стенках. Они успешно применяются в медицине.

Жиры

Жиры представляют собой соединения углерода, водород и кислород похожи на углеводы, но в них намного меньше кислорода. Из-за этого их часто называют углеводороды. Формула для типичный жир Триолеин показывает их химическую природу: C 57 H 104 O 4 .. Жиры производятся из углеводов двумя способами. процессы, (1) производство жирных кислот и (2) образование глицерин.Эти два продукта объединяются в образуют жидкие или твердые жиры. В жидком состоянии жиры называются маслами или жирными маслами, и бывают в виде небольших шариков. Жиры в небольших количествах присутствуют во всей живой протоплазме, но Складывается как резервный корм в основном в семенах и плодах. Они нерастворимы и должны перевариваться. перед использованием. У них высокая энергия содержания и являются ценным кормом как для растений, так и для животных. Жиры играют важную роль в медицине и промышленность.

Белки

Белки также частично получен из углеводов путем образования амино кислоты. Эти последние простые соединения затем соединяются с нитратами из почвы и другими веществами с образованием очень сложная молекула белка. Основная характеристика белков - высокое содержание азота.Также присутствует сера, и часто фосфор. Глиадин - типичный белок, который встречается в пшенице и имеет формулу: C 736 H 1161 N 184 O 208 S 3 . Несмотря на то, что белки являются основным составляющие протоплазмы, они хранятся в основном только в семенах, где они происходят в виде твердых гранул, называемых зернами алеурона. Известно, что сотни белков встречаются в ткани растений. Как только белки переведены в растворимую форму, они представляют собой важную пищу для обоих растения и животные.Они есть особенно ценны как строители мышц и нервов, а не как источник энергии и являются неотъемлемой частью рациона животных. Белки редко извлекаются из растений ткани для пищевых целей, за исключением соевых бобов. У белков очень мало промышленного применения.

СЕКРЕЦИИ И ИСКЛЮЧЕНИЯ

Растения производят различные типы веществ в виде выделения и выделения.Эти разнообразны по химическому составу и функциям. Некоторые из них секретируются в специальные клетки или ткани для определенного цель, в то время как другие не имеют очевидного использования и считаются побочными продуктами метаболизма. Иногда эти материалы, имеющие большую коммерческую ценность и включают эфирные масла, пигменты, смолы, дубильные вещества, латекс, воски, алкалоиды, глюкозиды, органические кислоты, ферменты, витамины и гормоны.

Эфирные масла

Эти масла часто называют эфирными маслами. отличаются от жирных масел высокой ароматичностью и летучестью.Они образуются в железах или специальных клетки. Их функция кажется в первую очередь для привлечения насекомых, участвующих в опылении, или для отражения враждебных насекомые и животные своим едким вкусом. Они могут оказывать антисептическое и бактерицидное действие в растения. Эти ароматические масла используются в производстве парфюмерии и мыла и в других отраслях промышленности, а также в медицине и как пищевые ароматизаторы.

Пигменты

Завод производит все красящие материалы, имеющиеся в его составе. основной корпус.Это химически и функционально разнообразны. Большинство важен хлорофилл, особенно сложное вещество. Он содержит пигменты ксантофилл и каротин и является одним из важнейших факторов фотосинтеза. Другие цвета имеют ценность только как средство привлечения насекомых и других животных для опыления и распространения, в то время как некоторые из них являются лишь побочными продуктами деятельности растений. Когда пигменты стабильны, их можно добывается и используется как краситель.

Танины

Горькие, вяжущие материалы, выделяемые в коре, древесине или других частях многих растений. Их функция может заключаться в помощи в заживление ран и предотвращение кариеса, а также может играть роль в образование пробки и пигментов. Они также служат защитой от естественных врагов.Танины обладают особыми свойствами, которые делают они бесценны в определенных отраслях. Они могут реагировать с белками, такими как желатин в шкурах животных, с образованием производить твердое, твердое вещество. Таким образом они используются при дублении кожи. Они также могут реагировать с солями железа с образованием черного. цвет. Это делает их ценными в красильная промышленность и производство красок. Танины находят применение в медицине благодаря их вяжущим свойствам. характеристики.

Смолы

Это сложные материалы, которые вероятно, получены из углеводов. Они секретируются железами или каналами и часто встречаются в сочетании. с эфирными маслами и камедями. Они образуются либо естественным путем, либо в результате повреждения тканей. Смолы нерастворимы в воде и поэтому любая поверхность, непроницаемая для влаги.Таким образом, они важны при производстве красок и лаки. Для растения могут служить смолы. удерживать влагу или противостоять гниению благодаря своему антисептическому действию. Некоторые смолы использовались в медицине.

Латекс

Растения часто выделяют молочный или цветная жидкость, которая называется латексом. Это смесь смол, камедей, углеводородов, пищевых продуктов и др. вещества, образующиеся в специальных сосудах, обычно в коре или листья.Его использование растением не ясно, но может быть задействован в защите. Производятся ценные промышленные товары, такие как резина и жевательная резинка. из латекса.

Воск

Часто бывает покрытие листья и плоды, которые выделяет растение, чтобы защитить его от чрезмерная потеря воды. Этот воск похож на жир по составу.Воски были собраны и в некоторой степени использовались в торговле, например, автомобильные воски.

Алкалоиды

Это растительные основания, которые содержат азот и считаются продукты разложения белков. Они секретируются в специальные клетки или пробирки. Они могут обеспечить защиту от естественных врагов из-за их горький вкус.Алкалоиды соединения без запаха, которые оказывают выраженное физиологическое действие на животных. Таким образом, они имеют важное значение в медицине. и являются одними из самых ценных лекарств. В их состав также входят сильнодействующие растительные яды. и наркотики. Такие вещества, как кофеин и теобромин, которые действительно являются тесно связанными пуриновыми основаниями, являются часто классифицируются как алкалоиды.

Глюкозиды

Хотя похож на алкалоиды в их свойства, глюкозиды получены из углеводов, а не белки.Считается, что они дают функции защиты, как они обычно встречаются в коре. Однако они могут служить для регулирования кислотность и щелочность растительных клеток. Эти вещества были полезны в качестве лекарств.

Органические кислоты

Они широко распространены среди растения, особенно фрукты и овощи.Они могут находиться в свободном состоянии в виде кальция, калия или натрия. соли или в сочетании со спиртами. Считается, что фруктовые кислоты проявляют влечение к животным и, таким образом, помогают в распространение фруктов и семян. Они также участвуют в обмене веществ и росте.

Ферменты

Ферменты присутствуют во всех живых организмы.Есть много разных видов, но обычно они присутствуют в очень небольших количествах. Они действуют как катализаторы в химической реакции. Они вызывают все химические изменения, которые происходят в живом веществе, фактически не вступая в сами реакции. Один из их наиболее важными функциями являются пищеварение, процесс, посредством которого нерастворимые материалы расщепляются на растворимые и тем самым становятся доступными для транспортировки ко всем частям организма для конечного использования.Ферменты бывают коллоидными и белковыми в природа. Они специфичны в своих действия. Их беспокоит не только с окислением и другими деструктивными фазами метаболизма, но с конструктивные фазы также. Они участвуют в фотосинтезе и в образовании белков и жиров и присутствуют в каждой живой клетке растения.

Витамины

Это вещества, которые кажутся необходимыми для благополучия как растения, так и животные.Они есть образованы растениями, и хотя животные могут их хранить, они неспособны производя их. Витамины присутствуют в чрезвычайно незначительные количества и поэтому их трудно изучать. Они необходимы для нормального обмена веществ, рост, развитие и размножение. Похоже, что они контролируют большинство конструктивных фаз метаболизма. Витамины также незаменимы для профилактика некоторых заболеваний человека, например цинга. Зеленые овощи, фрукты и семена - важные источники витамины.Водоросли особенно ценны тем, что содержат много разных видов витаминов.

Гормоны

Гормоны производятся в одной части организма, а затем передаются в другие части, где они могут влиять какой-то специфический физиологический процесс. Гормоны растений регулируют различные явления роста, такие как: тропизмы, увеличение клеток и удлинение клеток.Они также играют роль в производстве корней и цветов. и в формировании плодов.

Органические соединения

Химические соединения живых существ известны как органических соединений из-за их связи с организмами и потому, что они являются углеродсодержащими соединениями. Органические соединения, которые представляют собой соединения, связанные с жизненными процессами, являются предметом органической химии. Среди многочисленных типов органических соединений во всем живом есть четыре основные категории: углеводы, липиды, белки и нуклеиновые кислоты.

Углеводы

Почти все организмы используют углеводов в качестве источников энергии. Кроме того, некоторые углеводы служат конструкционными материалами. Углеводы - это молекулы, состоящие из углерода, водорода и кислорода; отношение атомов водорода к атомам кислорода и углерода составляет 2: 1.

Простые углеводы, обычно называемые сахарами, могут быть моносахаридами, , если они состоят из одиночных молекул, или дисахаридами, , если они состоят из двух молекул.Наиболее важным моносахаридом является глюкоза, углевод с молекулярной формулой C 6 H 12 O 6 . Глюкоза - это основная форма топлива для живых существ. В многоклеточных организмах он растворим и транспортируется жидкостями организма ко всем клеткам, где метаболизируется, чтобы высвободить свою энергию. Глюкоза является исходным материалом для клеточного дыхания и основным продуктом фотосинтеза (см. Главы 5 и 6).

Три важных дисахарида также содержатся в живых организмах: мальтоза, сахароза и лактоза.Мальтоза представляет собой комбинацию двух ковалентно связанных единиц глюкозы. Сахароза столовая образуется путем связывания глюкозы с другим моносахаридом, называемым фруктозой. (Рисунок 2-2 показывает, что при синтезе сахарозы образуется молекула воды. Поэтому этот процесс называется реакцией дегидратации . добавляется вода.) Лактоза состоит из единиц глюкозы и галактозы.

Рисунок 2-2 Молекулы глюкозы и фруктозы объединяются, образуя дисахарид сахарозу.

Сложные углеводы известны как полисахариды . Полисахариды образуются путем связывания бесчисленных моносахаридов. Среди наиболее важных полисахаридов - крахмал, который состоит из сотен или тысяч единиц глюкозы, связанных друг с другом. Крахмал служит формой хранения углеводов. Большая часть населения планеты удовлетворяет свои потребности в энергии с помощью крахмала в виде риса, пшеницы, кукурузы и картофеля.

Два других важных полисахарида - это гликоген и целлюлоза. Гликоген также состоит из тысяч единиц глюкозы, но эти единицы связаны другим образом, чем в крахмале. Гликоген - это форма, в которой глюкоза хранится в печени человека. Целлюлоза используется в основном как структурный углевод. Он также состоит из единиц глюкозы, но единицы не могут высвобождаться одна из другой, за исключением нескольких видов организмов. Древесина состоит в основном из целлюлозы, как и стенки растительных клеток. Хлопчатобумажная ткань и бумага - это товарные целлюлозные продукты.

Липиды

Липиды - это органические молекулы, состоящие из атомов углерода, водорода и кислорода. Отношение атомов водорода к атомам кислорода в липидах намного выше, чем в углеводах. Липиды включают стероиды (материал, из которого состоят многие гормоны), воски и жиры.

Молекулы жира состоят из молекулы глицерина и одной, двух или трех молекул жирных кислот (см. Рис. 2-3). Молекула глицерина содержит три гидроксильные (–ОН) группы.Жирная кислота представляет собой длинную цепочку из атомов углерода (от 4 до 24) с карбоксильной (–COOH) группой на одном конце. Все жирные кислоты в жире могут быть одинаковыми или разными. Они связаны с молекулой глицерина в процессе удаления воды.

Некоторые жирные кислоты имеют в своих молекулах одну или несколько двойных связей. Жиры, в состав которых входят эти молекулы, представляют собой ненасыщенных жиров. Другие жирные кислоты не имеют двойных связей. Жиры, в состав которых входят эти жирные кислоты, представляют собой насыщенных жиров. В большинстве случаев, связанных со здоровьем человека, потребление ненасыщенных жиров предпочтительнее насыщенных жиров.

Жиры, хранящиеся в клетках, обычно образуют прозрачные масляные капли, называемые глобулами , потому что жиры не растворяются в воде. Растения часто хранят жиры в своих семенах, а животные - в больших прозрачных шариках в клетках жировой ткани. Жиры в жировой ткани содержат много концентрированной энергии. Следовательно, они служат резервным источником энергии для организма.Фермент липаза расщепляет жиры на жирные кислоты и глицерин в пищеварительной системе человека.

Рис. 2-3 Молекула жира создается путем объединения молекулы глицерина с тремя молекулами жирных кислот. (Две насыщенные жирные кислоты и одна ненасыщенная жирная кислота показаны для сравнения.) Сконструированная молекула находится внизу.

Белки

Белки, среди самых сложных из всех органических соединений, состоят из аминокислот (см. Рис. 2-4), которые содержат атомы углерода, водорода, кислорода и азота.Некоторые аминокислоты также содержат атомы серы, фосфора или других микроэлементов, таких как железо или медь.

Рисунок 2-4 Структура и химический состав аминокислот. Когда две аминокислоты соединяются в дипептид, –OH одной аминокислоты удаляется, а –H второй удаляется. Итак, вода удалена. Дипептидная связь (справа) образует соединение аминокислот вместе.

Многие белки огромны и чрезвычайно сложны. Однако все белки состоят из длинных цепочек относительно простых аминокислот.Есть 20 видов аминокислот. Каждая аминокислота (см. Левую иллюстрацию на рисунке 2-4) имеет амино (–NH 2 ) группу, карбоксильную (–COOH) группу и группу атомов, называемую –R группой (где R обозначает радикал ). Аминокислоты различаются в зависимости от природы группы –R, как показано на средней иллюстрации рисунка 2-4. Примерами аминокислот являются аланин, валин, глутаминовая кислота, триптофан, тирозин и гистидин.

Удаление молекул воды связывает аминокислоты с образованием белка.Процесс называется дегидратационным синтезом , и побочным продуктом синтеза является вода. Связи между аминокислотами составляют пептидных связей, и небольшие белки часто называют пептидами.

Все живое зависит от белков. Белки - это основные молекулы, из которых построены живые существа. Некоторые белки растворены или суспендированы в водянистом веществе клеток, а другие включены в различные структуры клеток.Белки также являются поддерживающими и укрепляющими материалами в тканях вне клеток. Кости, хрящи, сухожилия и связки состоят из белков.

Одна из важнейших функций белков - это фермент. Ферменты катализируют химические реакции, происходящие в клетках. Они не расходуются в реакции; скорее, они остаются доступными для катализа последующих реакций.

Каждый вид производит белки, уникальные для этого вида. Информация для синтеза уникальных белков находится в ядре клетки.Так называемый генетический код определяет аминокислотную последовательность в белках. Следовательно, генетический код регулирует химию, происходящую внутри клетки. Белки также могут служить резервным источником энергии для клетки. Когда аминогруппа удаляется из аминокислоты, полученное соединение богато энергией.

Нуклеиновые кислоты

Как и белки, нуклеиновых кислот - очень большие молекулы. Нуклеиновые кислоты состоят из более мелких единиц, называемых нуклеотидами. Каждый нуклеотид содержит молекулу углевода (сахар), фосфатную группу и азотсодержащую молекулу, которая в силу своих свойств является азотистым основанием .

У живых организмов есть две важные нуклеиновые кислоты. Один тип - это дезоксирибонуклеиновая кислота , ДНК или . Другой - это рибонуклеиновая кислота, или РНК. ДНК находится в основном в ядре клетки, в то время как РНК обнаруживается как в ядре, так и в цитоплазме , - полужидкое вещество, составляющее объем клетки (см. Главу 3).

ДНК и РНК

отличаются друг от друга по своим компонентам. ДНК содержит углевод дезоксирибозу, а РНК - рибозу. Кроме того, ДНК содержит тимин, а РНК - урацил. Структура ДНК и ее значение в жизни клеток рассматриваются в главе 10.

Определение углеводов и примеры - Биологический онлайн-словарь

Углеводы
существительное
множественное число: углеводы
[car · bo · hy · drate, kɑːbəʊˈhaɪdɹeɪt]
Определение: любое из группы органических соединений, состоящих из углерода, водорода, и кислород, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 O) n

Определение углеводов

Биомолекула относится к любой молекуле, которая производится живыми организмами. организмы.Таким образом, большинство из них являются органическими молекулами. Четыре основные группы биомолекул включают аминокислоты и белки, углеводы (особенно полисахариды), липиды и нуклеиновые кислоты. Углевод относится к любой группе органических соединений, состоящей из углерода, водорода и кислорода, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 O) n . Углеводы являются наиболее распространенными среди основных классов биомолекул.

Углеводы (определение биологии): любое из группы органических соединений, состоящих из углерода, водорода и кислорода, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 О) н. . Синонимы: сахарид, карб.

Характеристики углеводов

Углеводы - это органические соединения. Органическое соединение - это соединение, которое, как правило, содержит углерод, ковалентно связанный с другими атомами, особенно углерод-углерод (C-C) и углерод-водород (C-H). Углеводы являются примером многих типов органических соединений. Его четыре основных составляющих элемента - это углерод, водород, кислород и азот. Большинство из них следуют общей формуле: C n (H 2 O) n , откуда они и получили свое название, углеводов (что означает гидратов углерода ).Это потому, что отношение атомов водорода к атомам кислорода часто составляет 2: 1. Однако не все углеводы соответствуют этой формуле. По сути, это органические соединения, которые представляют собой альдегиды или кетоны с добавлением многих гидроксильных групп, обычно на каждый атом углерода, не являющийся частью функциональной группы альдегида или кетона.

Углеводы - это биомолекулы, богатые энергией . Они являются одними из основных питательных веществ, необходимых многим живым организмам, поскольку обеспечивают организм источником химической энергии.АТФ - это химическая энергия, вырабатываемая в ходе метаболических процессов клеточного дыхания. Вкратце, глюкоза (моносахарид) «сбивается» для извлечения энергии, прежде всего в форме АТФ. Во-первых, ряд реакций приводит к превращению глюкозы в пируват. Затем он использует пируват, превращая его в ацетилкофермент А для окисления посредством циклической реакции, управляемой ферментами, которая называется цикл Кребса . Наконец, каскад реакций ( окислительно-восстановительных реакций, ) с участием цепи переноса электронов приводит к производству АТФ (посредством хемиосмоса). 1 Молекулы глюкозы, используемые в гликолизе, происходят из углеводсодержащей диеты. Сложные углеводы расщепляются на более простые моносахариды, такие как глюкоза, путем осахаривания во время пищеварения.
Углеводы - один из основных источников питания животных, в том числе человека. Однако многие другие углеводы находятся в форме волокон. И как клетчатка, она с трудом переваривается людьми. Обычно волокнистые углеводы включают слизи, пектины, камеди и нерастворимые компоненты, такие как те, которые содержатся в лигнине и целлюлозе.Жвачные животные, такие как крупного рогатого скота , овец , оленей и коз , способны переваривать растительные материалы, которые в противном случае неудовлетворительны для человека. Некоторые симбиотические бактерии (например, Ruminococcus , Fibrobacter , Streptococcus , Escherichia ) обитают в их рубце, которые могут разлагать целлюлозные материалы до более простых углеводов для жвачных животных.

Классификация углеводов

Многие углеводы представляют собой полимеров .Полимер - это соединение, состоящее из нескольких повторяющихся звеньев ( мономеров ) или протомеров и полученное путем полимеризации . Сахарид - структурная (мономерная) единица углеводов. Углеводы можно разделить на моносахаридов , дисахаридов , олигосахаридов и полисахаридов в зависимости от количества сахаридных единиц.
Самый фундаментальный тип - это простые сахара, называемые моносахаридами .Эти простые сахара могут сочетаться друг с другом, образуя более сложные типы. Примерами являются глюкозы , галактозы и фруктозы . Комбинация двух простых сахаров называется дисахаридом . Примерами являются сахароза , мальтоза и лактоза . Углеводы, состоящие из трех-десяти простых сахаров, называются олигосахаридами . Примерами являются рафиноза , мальтотриоза и мальтотетраоза .Углеводы, состоящие из нескольких сахаридных единиц, называются полисахаридами . Когда полисахарид состоит из сахаридных единиц одного и того же типа, его называют гомополисахаридом (или гомогликаном), тогда как полисахарид состоит из более чем одного типа сахаридов, он называется гетерополисахаридом (или гетерогликаном). Примерами полисахаридов являются крахмал , целлюлоза и гликоген .
С точки зрения питания углеводы подразделяются на две основные группы пищевых продуктов: простые и сложные . Простые углеводы - иногда называемые просто «сахаром» - это те углеводы, которые легко усваиваются и служат быстрым источником энергии. Сложные углеводы - это те углеводы, которым требуется больше времени для переваривания и метаболизма. Они часто богаты клетчаткой и, в отличие от простых углеводов, с меньшей вероятностью вызывают скачки сахара в крови.

Функции углеводов

Как отмечалось ранее, одна из основных функций углеводов - обеспечивать организм энергией.В частности, моносахариды являются основным источником энергии для обмена веществ. Когда они еще не нужны, они превращаются в полисахариды, запасающие энергию, такие как крахмал у растений и гликоген у животных.

В растениях крахмал присутствует в большом количестве в амилопластах внутри клеток различных органов растений, например плоды, семена, корневища и клубни. У животных гликоген накапливается в печени и мышечных клетках.
Кроме того, углеводы также являются важными структурными компонентами.

На клеточном уровне полисахариды (например, целлюлоза ) являются составными частями клеточных стенок растительных клеток и многих водорослей . Клетки без клеточных стенок более подвержены структурным и механическим повреждениям. У растений клеточная стенка предотвращает разрыв клетки в гипотоническом растворе.

Осмотическое давление заставляет воду диффундировать в клетку. Стенка клетки сопротивляется осмотическому давлению и тем самым предотвращает разрыв клетки.

В стенках бактериальных клеток структурный углевод является мышиным, тогда как в грибах полисахарид хитин является компонентом клеточной стенки.У некоторых бактерий есть полисахаридная «капсула», которая помогает им уклоняться от обнаружения иммунными клетками. У некоторых животных есть экзоскелеты из хитина, которые обеспечивают силу и защиту мягкотелым животным.

Нуклеиновые кислоты, такие как РНК и ДНК, содержат сахарный компонент, то есть рибозу и дезоксирибозу соответственно. Многие другие биологические молекулы также содержат сахарные компоненты, такие как гликопротеины, гликолипиды, протеогликаны, которые, в свою очередь, выполняют жизненно важные роли, например иммунный ответ, детоксикация, свертывание крови, оплодотворение, биологическое распознавание, и т. д. .

Общие биологические реакции с участием углеводов

Ниже приведены некоторые из общих биологических реакций с участием углеводов.

Фотосинтез

У растений и других фотосинтетических автотрофов синтез простых сахаров (например, глюкозы) осуществляется посредством фотосинтеза . В этом процессе используются углекислый газ, вода, неорганические соли и световая энергия (от солнечного света), захваченная светопоглощающими пигментами, такими как хлорофилл и другие вспомогательные пигменты, для производства молекул глюкозы, воды и кислорода.

Процесс фотосинтеза

Дегидратационный синтез

Моносахарид образует углеводы, соединяясь вместе в гликозидные связи посредством процесса, называемого дегидратационным синтезом . Например, при образовании дисахарида соединение двух моносахаридов приводит к выделению воды в качестве побочного продукта. Точно так же полисахариды образуются из длинной цепи моносахаридных единиц в процессе дальнейшей дегидратации. Образующиеся крахмал и гликоген служат молекулами, богатыми энергией.Эти сложные углеводы расщепляются на более простые формы (например, глюкозу), когда организму требуется больше энергии. Этот процесс называется осахариванием.

Осахаривание

Процесс, при котором сложные углеводы разлагаются до более простых форм, таких как глюкоза, называется осахариванием. Это влечет за собой гидролиз . У людей и других высших животных это связано с ферментативным действием. Во рту глюкозосодержащие сложные углеводы расщепляются на более простые формы под действием амилазы слюны .В тонком кишечнике продолжается переваривание сложных углеводов. Ферменты, такие как мальтаза , лактаза и сахараза , расщепляют дисахариды на моносахаридные составляющие. Глюкозидазы представляют собой другую группу ферментов, которые катализируют удаление концевой глюкозы из полисахарида, состоящего в основном из длинных цепей глюкозы.

Ассимиляция

Моносахариды из переваренных углеводов абсорбируются эпителиальными клетками тонкого кишечника.Клетки забирают их из просвета кишечника через систему симпорта ионов натрия и глюкозы (через транспортеры глюкозы или GluT). GluT - это белки, облегчающие транспортировку моносахаридов, таких как глюкоза, в клетку. Затем они высвобождаются в капилляры за счет облегченной диффузии . Клетки тканей снова забирают их из кровотока через GluT. Находясь внутри клетки, глюкоза фосфорилируется, чтобы удерживать ее внутри клетки. Как следствие, глюкозо-6-фосфат может использоваться в любом из следующих метаболических путей: (1) гликолиз, чтобы синтезировать химическую энергию, (2) гликогенез, когда глюкоза доставляется в печень через портовые вены, чтобы быть хранится как клеточный гликоген , или (3) пентозофосфатный путь для образования НАДФН для синтеза липидов и пентоз для синтеза нуклеиновых кислот.

Клеточное дыхание

Глюкоза метаболизируется клеткой в ​​процессе, называемом клеточное дыхание . Основными этапами или процессами клеточного дыхания являются (1) гликолиз, (2) цикл Кребса и (3) окислительное фосфорилирование. На начальном этапе (например, гликолиз ) серия реакций в цитозоле приводит к превращению моносахарида, часто глюкозы, в пируват и сопутствующему производству относительно небольшого количества высокоэнергетических биомолекул, таких как АТФ. .Также производится НАДН, молекула, переносящая электроны . В присутствии достаточного количества кислорода пируват в результате гликолиза превращается в органическое соединение, которое полностью окисляется внутри митохондрии. Электронные носители (например, NADH и FADH 2 ) перемещают электроны по цепи переноса электронов . По всей цепи происходит серия окислительно-восстановительных реакций, которая завершается образованием конечного акцептора электронов , то есть молекулярного кислорода. Больше АТФ производится посредством механизма сцепления посредством хемиосмоса во внутренней митохондриальной мембране.

Только от гликолиза чистое АТФ равно двум (от фосфорилирования на уровне субстрата). При окислительном фосфорилировании чистый АТФ составляет около 34. Таким образом, общий чистый АТФ на глюкозу составляет примерно 36. 2 При отсутствии или недостаточности кислорода происходит анаэробный катаболизм (например, при ферментации). Ферментация - это анаэробный процесс, при котором в результате гликолиза образуется АТФ. Однако вместо того, чтобы перемещать электроны в цепи переноса электронов, НАДН передает электроны пирувату, восстанавливая НАД + , который поддерживает гликолиз. 2 Общее количество АТФ, произведенных на глюкозу в результате ферментации, составляет всего около двух.

Читать: Клеточное дыхание - Гликолиз

Глюконеогенез

Глюконеогенез кажется обратным гликолизу: глюкоза превращается в пируват, тогда как при глюконеогенезе пируват превращается в глюкозу. По сути, глюконеогенез - это метаболический процесс, при котором глюкоза образуется из неуглеводных предшественников, например пируват , лактат , глицерин и глюкогенные аминокислоты .У человека и многих других позвоночных глюконеогенез происходит в основном в клетках печени. Это часто происходит во время голодания, низкоуглеводных диет или интенсивных упражнений. Цитологически процесс начинается в митохондриях, затем заканчивается в просвете эндоплазматической сети. Глюкоза, образованная при гидролизе глюкозо-6-фосфата ферментом глюкозо-6-фосфатазой, перемещается из эндоплазматического ретикулума в цитоплазму.

Гликогенез

Гликогенез - это метаболический процесс производства гликогена из глюкозы для хранения, главным образом, в клетках печени и мышц в ответ на высокие уровни глюкозы в кровотоке.Короткие полимеры глюкозы, особенно экзогенной глюкозы , превращаются в длинные полимеры, которые хранятся внутри клеток, главным образом в печени и мышцах. Когда организму требуется метаболическая энергия, гликоген расщепляется на субъединицы глюкозы в процессе гликогенолиза. Таким образом, гликогенез - это процесс , противоположный процессу гликогенолиза .

Гликогенолиз

Гликогенолиз - это процесс расщепления накопленного гликогена в печени, чтобы можно было производить глюкозу для использования в энергетическом обмене.Накопленный в клетках печени гликоген расщепляется на предшественники глюкозы. Отдельная молекула глюкозы отделяется от гликогена и превращается в глюкозо-1-фосфат , который, в свою очередь, превращается в глюкозо-6-фосфат , который может вступать в процесс гликолиза .

Пентозофосфатный путь

Пентозофосфатный путь - это путь метаболизма глюкозы, в котором пятиуглеродные сахара (пентозы) и НАДФН синтезируются в цитозоле.Путь пентозофосфата служит альтернативным метаболическим путем при расщеплении глюкозы. У животных это происходит в печени, коре надпочечников, жировой ткани, семенниках и т. Д. Этот путь является основным путем метаболизма нейтрофилов. Таким образом, врожденная недостаточность этого пути вызывает чувствительность к инфекции. У растений часть этого пути участвует в образовании гексоз из углекислого газа в процессе фотосинтеза.

Путь Лелуара (метаболизм галактозы)

В этом метаболическом пути галактоза вступает в гликолиз, сначала фосфорилируясь с помощью фермента галактокиназы , а затем превращаясь в глюкозо-6-фосфат .Галактоза производится из лактозы (молочный сахар, состоящий из молекулы глюкозы и молекулы галактозы).

Фруктозо-1-фосфатный путь

В этом метаболическом пути фруктоза вместо глюкозы вступает в гликолиз. Тем не менее, фруктоза требует дополнительных шагов до начала гликолиза. У животных это происходит в мышцах, жировой ткани и почках.

Глюкорегуляция

Правильный метаболизм углеводов необходим для правильного усвоения и катаболизма углеводов в организме.Поддержание стабильного уровня глюкозы в организме называется глюкорегуляцией . Гормоны поджелудочной железы, такие как инсулин и глюкагон, регулируют правильный метаболизм глюкозы. Уровень сахара в крови означает количество глюкозы, циркулирующей в организме. Когда уровень глюкозы в крови низкий, глюкагон высвобождается. И наоборот, высокий уровень глюкозы в крови стимулирует высвобождение инсулина. Инсулин регулирует метаболизм углеводов (а также жиров), способствуя захвату глюкозы из кровотока в скелетные мышцы и жировые ткани, которые сохраняются в виде гликогена для последующего использования при гликогенолизе.Глюкагон, в свою очередь, стимулирует производство сахара. В частности, он заставляет хранящийся в печени гликоген превращаться в глюкозу, которая попадает в кровоток.
Неправильный углеводный обмен может привести к определенным метаболическим заболеваниям или нарушениям, например сахарный диабет, непереносимость лактозы, галактоземия, болезнь накопления гликогена и мальабсорбция фруктозы.

Попробуйте ответить на приведенный ниже тест, чтобы проверить, что вы узнали об углеводах.

Следующий .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*
*